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Combinatória, como o nome sugere, é a ciência das combinações. Durante este
trabalho, exploramos duas áreas principais da Combinatória: Permutações e Grafos.
Embora muito próximas, tratamos as áreas de maneira separada.

Em Permutações, abordamos o problema das permutações Montanhas-Russas,
que são permutações que maximizam, junto às suas subsequências, o quanto elas al-
ternam entre subidas e descidas. Essa classe especial de permutações foi introduzida
em 2013 por T. Ahmed e H. Snevily que, além de sua definição, levantaram diversas
conjecturas sobre sua estrutura. Neste trabalho, apresentamos uma definição alter-
nativa para essas permutações, bem como um modelo de Programa Linear Inteiro
associado para encontrá-las. Através desse modelo, conseguimos obter novos exemp-
los de Montanhas-Russas, e, através de um modelo que adota restrições com base em
certas conjecturas estruturais, obtivemos novas candidatas para Montanhas-Russas.
Por fim, motivamos o estudo desse problema sob outras óticas, apresentando con-
jecturas relacionadas a outras representações de permutações.

Em Grafos, apresentamos uma vasta coleção de resultados a respeito da famosa
Conjectura de Erdős-Sos presentes na literatura. Em 1962, P. Erdős e V. Sós con-
jecturaram que, para inteiros positivos n, k, todo grafo com n vértices e pelo menos
n(k − 2)/2 + 1 arestas contém, como subgrafo, todas as árvores com k vértices.
Neste trabalho, dividimos tais resultados em quatro direções principais, cada uma
representando um enfraquecimento diferente dessa conjectura, com o objetivo de
apontar possiveis direções para contribuições ao estado da arte com respeito a esse
problema.
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Combinatorics is, as its name suggests, the science of combinations. Throughout
this work, we focus on two main sub-areas of Combinatorics: Permutations and
Graphs. Albeit two very related fields, we deal with them in a separate matter.

In Permutations, we study the problem of the Roller Coaster permutations, which
are permutations that maximize, along with its subsequences, the number of ascents
and descents. This special class of permutations was introduced in 2013 by T.
Ahmed and H. Snevily which, besides its definition, conjectured many properties on
its structure. In this work, we present an alternative and equivalent definition for the
Roller Coaster permutations, together with an Integer Linear Programming model
to find such permutaions. With this model, we obtained new examples for Roller
Coasters, and, with an extended version of this model, based on certain structural
conjectures, we obtained new candidates for Roller Coasters. Lastly, we motivated
the study of this problem from another point of view, presenting conjectures related
to other representations of permutations.

In Graphs, we present an extensive collection of results with respect to the famous
Erdős-Sós Conjecture, which are found in the literature. In 1962, P. Erdős and V.
Sós conjectured that for positive integers n, k, every graph on n vertices and at least
n(k − 2)/2 + 1 edges, contains every tree on k vertices. In this work, we divided
the partial results in four main directions, each representing a different weakening of
this conjecture, with the objective of pointing out possible directions to contribute
to the state of the art with respect to this problem.
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Prologue

The present work is a study on two different problems in Combinatorics.
Our research began with the study of the problem concerning Roller Coaster

permutations, which the main objective is to find a permutation that maximizes a
certain function of “alternation”. We obtained new examples of such permutations
as well as an equivalent and alternative definition that allowed us to find it much
faster then with the classical definition.

After exploring the field of Extremal Graph Theory, we began studying the
classical theorems and ideas, in preparation to understand the main results on the
Erdős–Sós Conjecture. Our main objective was to find similar patterns in the proofs
to point out directions to contribute to the state of the art with respect to this
problem. We hope that this work might be of good use for future students and
researchers interested in either of those combinatorial problems.

This work is structured as follows. In Chapter 1, we motivate both of the ab-
stract objects that are the main subject of each of the problems. For the first one,
Permutations, besides some formalities as notation and simple properties, we present
a remarkable enumeration problem, known to be solved since 1879, concerning al-
ternating permutations, which are permutations that switches between ascents and
descents, and are believed to be closely related with the permutations studied in the
following chapter. For the second object, Graphs, we present its historical origin and
classical definitions of Graph Theory. Since its notation is not consistent across the
literature, it is important that we specify the notation used in this work. Together
with these formalities, we present some enumerative results on special classes of
graphs, known as caterpillars and spiders, which are special cases treated in the last
chapter of this work. Lastly, we present a section on representations of permuta-
tions, where we explain different possible representation of permutations as graphs,
which is explored in the final part of Chapter 2.

In Chapter 2, we explore a problem concerning Roller Coaster permutations. In-
formally, they are permutations that, along with all of its subsequences, maximizes
the amount of changes between ascents and descents. We give the formal definition,
known results in the literature, as well as important structural conjectures. Our main
result is an alternative and equivalent definition that, besides yielding to a faster
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algorithm to determine Roller Coaster permutations, motivated the development of
an Integer Linear Programming (ILP) model to find them. We present the results
obtained with said model, showing an improvement to the known Roller Coaster per-
mutations in the literature. We also present an extended version of this ILP model
that considers constraints based on a conjectured structure of the Roller Coasters,
which improved the performance of the ILP model. With the extended model, we
obtained candidates for even bigger permutations, improving known lower bounds.
Finally, we conclude this chapter presenting the Roller Coaster permutation problem
in different points of view that arises when one consider different representations of
a permutation.

In Chapter 3, we transition to the second problem by presenting some classical
results on Extremal Graph Theory, as a preparation to the study of one of the
main conjectures in this field, the Erdős–Sós Conjecture. We present a motivational
problem concerning the maximal cardinality of a sum-free set, and then proceed
to the historical result of W. Mantel from 1907, which determines the maximum
number of edges in a graph that avoid triangles. We proceed to other theorems on
the number of edges of a graph that cannot avoid different structures, for example,
complete graphs, even cycles, paths and, finally, trees. The problem of avoiding
trees is the main motivation of the Erdős-Sós Conjecture, which states that a graph
on n vertices and n(k − 2)/2 + 1 edges contains all trees on k vertices. We present
different positive results on this conjecture for specific graphs or specific trees, which
are present in the literature. We divide these results in four different directions, each
representing a different weakening of the conjecture, with the objective of pointing
out possible directions to contribute to the state of the art with respect to this
problem. For every statement in each direction, we present a sketch of the proof,
whenever we found one in the literature. We conclude the chapter presenting a
tentative extension of one of the present proofs, that we, unfortunately, were not
able to finish.

Lastly, In Chapter 4, we present the concluding remarks as well as possible future
work on both problems studied in this dissertation.
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1 | Introduction

The purpose of this chapter is to make this dissertation as self-contained as possible,
and to provide a quick reference for the readers that are not familiar with some
concepts in Combinatorics.

In Section 1.1, we explore the concept of Permutations, presenting the main
notation and definitions that are studied in Chapter 2, together with an enumerative
result on alternating permutations due to D. André [6].

In Section 1.2, we present some important, yet introductory, concepts from Graph
Theory, as well as some important classes of graphs, that are explored further in
the context of Extremal Graph Theory in Chapters 3. We also present known
enumerative results of some special classes of graphs.

Finally, in Section 1.3, we explore some representations of permutations through
different kinds of graphs, relating these two objects in attempt to exhibit special
properties from permutations that would otherwise be unapparent.

Throughout the text, we denote the set of the positive integers {1, 2, 3, . . . } by
N. For a given n ∈ N, the finite set {1, 2, . . . n} is denoted by [n]. Finally, we denote
the empty set {} by ∅.

1.1 Permutations

Permutations arise in many different fields in mathematics, as one of the classical
abstractions that express in how many ways one may rearrange the elements of a
particular set. Formally, fixed a set S, usually finite, a permutation π is a bijective
function π : S → S. A representation, used by A. Cauchy [15], denoted a permuta-
tion in two lines: the first containing the elements of S; and the second containing
the image through π. For example, for the set S = [4], a particular permutation π

can be written as

π =

(
1 2 4 3

2 4 3 1

)
.

This means that π satisfies π(1) = 2, π(2) = 4, π(3) = 1 and π(4) = 3. Note

3



that the same permutation may be represented in different ways by applying π on
the elements of S but in a different order. For example, the same permutation π

can be written as

π =

(
1 2 4 3

2 4 3 1

)
=

(
2 4 3 1

4 3 1 2

)
If there is a natural order of the elements in S, say s1, s2, . . . , sn, and π is defined

as

π =

(
s1 s2 s3

π(s1) π(s2) π(s3)

)
,

then one may omit the first row of elements and write simply

π = π(s1)π(s2)π(s3),

which is known as the One-Line notation of a permutation. This notation mo-
tivates the understanding of a permutation as a word. For this reason, we shall
denote the i-th element of a permutation π as πi and, therefore, the permutation π

is written as (π1, π2, π3, . . . , πn). We omit commas and parentheses whenever doing
so produces no ambiguity. Given a set S, we denote by |S| the number of elements
in S. The length of a permutation π : S → S, denoted by |π| is equal to |S|.

A subsequence τ of a permutation π, denoted by τ ⊆ π, is a sequence obtained
from π by removing some (maybe none) of the elements of π, while keeping the
order of the remaining elements.

Let Sn denote the set of all permutations of the set [n]. Observe that |Sn| =
n! = n(n− 1)(n− 2) · · · (2)(1). Since to build a permutation π ∈ Sn, we can choose
n entries to be π1, then n − 1 entries to be π2 and so on. Therefore, there are
n(n− 1)(n− 2) · · · (2)(1) possible permutations of length n.

Fixed a permutation π = π1π2π3 . . . πn, for 1 < i < n, we call the subsequence
πi-1πiπi+1 a peak (resp. valley) if πi > πi-1, πi+1 (resp. πi < πi-1, πi+1). Now, for
any subsequence τ ⊆ π, we denote by p(τ) (resp. v(τ)) the number of peaks (resp.
valleys) of τ . For example p(42135) = 0 but v(42135) = 1 since 213 is a valley.
We now generalize the idea of peaks and valleys to other subsequences, since, for
example, in π = 42135, it may be interesting to look at the subsequence 215 and
call it a valley by itself.

For 1 ≤ i < j < k ≤ n, we say that the triple (πi, πj, πk) is a triangle, if
πiπjπk is either a peak or a valley. For this reason, we define the indicator function
∆: (πi, πj, πk) → {0, 1} that indicates whether the triple (πi, πj, πk) is a triangle,
which can be written as ∆(πi, πj, πk) = p(πiπjπk) + v(πiπjπk).
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Given a permutation π and a triangle πi, πj, πk ⊆ π, we call the basis of the
triangle the number k − i+ 1. Moreover, for a given basis b and permutation π, we
denote by ∆b(π) the set of all the triangles in π with basis equal to b.

A permutation π is called alternating if it consists of consecutive triangles of
base 3. That is, either π1 > π2 < π3 > π4 < · · · or π1 < π2 > π3 < π4 > · · · .

Given a permutation π, we call a pair of consecutive elements (πi, πi+1) an ascent
(resp. a descent) if πi+1 > πi (resp. πi+1 < πi). We call a permutation π an ascend-
ing alternating permutation if π is an alternating permutation that starts with an
ascent, i.e., π1 < π2 > π3 < · · · . In the same manner, we call π a descending alter-
nating permutation, if π is an alternating permutation that start with a descent, i.e.,
π1 > π2 < π3 > · · · . We denote the set of all ascending (respectively, descending)
alternating permutation of length n as Ascn (respectively, Descn), and let En denote
the size of the set Ascn.

For any permutation π ∈ Sn, we define the permutation πc as the complement
permutation, and the permutation πr as the reverse permutation, respectively, as
the permutation whose i-th term is defined as:

(πc)i = n+ 1− πi.

(πr)i = πn+1−i.

Clearly they are injective operations, which means that for π, π′ ∈ Sn if π ̸= π′

then πc ̸= (π′)c and πr ̸= (π′)r. And since they are involutions, which means that
(πc)c = π and (πr)r = π, they are bijections. Note that for every permutation
π ∈ Ascn, the permutation πc ∈ Descn, which implies that |Ascn| = En = |Descn|.

Before we present the next result, we first introduce the concept of Generating
Functions. Given a sequence A = {ak}k≥0, the generating function A is the formal

power series A(x) =
∞∑
k≥0

akx
k, where the coefficient of xk, denoted by [xk]A(x), is

ak. Note that:

A(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + · · ·

Assuming that A is k times differentiable, taking k derivatives with respect to x

yields

DkA(x) = k!ak +
(k + 1)!

1
ak+1x+

(k + 2)!

2!
ak+2x

2 +
(k + 3)!

(3!)
ak+3x

3 + · · · .

Evaluating at the point x = 0 results in

5



DkA(0) = k!ak.

Therefore, assuming that A is k times differentiable at 0, we have

[xk]A(x) = ak =
1

k!
DkA(0).

Given a sequence A = {ak}k≥0, the exponential generating function (EGF) of A
is the formal power series A(x) =

∞∑
k≥0

ak
xk

k!
. Enumeration of permutations is mostly

approached through EGFs, since the generating function P (x) =
∑
k≥0

k!xk diverges

for all x ̸= 0, which means that it has radius of convergence 0 and is not an analytical
function. On the other hand, the exponential generating function P (x) =

∑
k≥0

k!x
k

k!

has radius of convergence 1, since it converges for 0 ≤ x < 1. Naturally, for an EGF
A(x) =

∑
k≥0

ak
xk

k!
, one may write ak = [x

k

k!
]A(x) = k![xk]A(x).

This abstraction allows us to extract properties from the sequence even though
we might not know its closed formula. For more on Analytic Combinatorics and
Generating Functions, we refer to P. Flajolet and R. Sedgewick in [25] and H. Wilf
in [48].

In Chapter 2, we study a special kind of permutation that is believed to be closely
related to alternating permutations. The following theorem, which is a remarkable
enumerative result of alternating permutations, shall serve as a motivation to the
study of the structure of such permutations.

Theorem 1.1 (D. André, 1879). Let Wn be the set of all the alternating permuta-
tions of length n. We have that

|Wn| = 2En = 2

[
xn

n!

]∑
k≥0

Ek
xk

k!
= 2

[
xn

n!

]
(secx+ tanx).

Proof. The first equality comes from the fact that Wn = Ascn ∪ Descn, and
Ascn ∩ Descn = ∅, which implies that |Wn| = 2En. Now, let 0 ≤ k ≤ n. There
are

(
n
k

)
ways to choose a k-subset S of [n], and set S̄ = [n]− S. Let u : S → S, and

v : S̄ → S̄ be, respectively, a permutation of the elements of S and a permutation
of the elements of S̄. Note that there are Ek ways to choose u from Desck and En−k

ways to choose v from Ascn−k. Let w be the concatenation (ur, n+1, v) where ur

denotes the reverse of u. When n ≥ 2, this yields each of the 2En+1 permutations
exactly once. Hence

2En+1 =
n∑

k=0

(
n

k

)
EkEn−k.

6



Multiplying the both sides by xn

n!
and summing for all n ≥ 1 yields

2
∑
n≥1

2En+1
xn

n!
=
∑
n≥1

∑
k=0

(
n

k

)
EkEn−k. (1.1)

Note that, for the left hand side (LHS), we have

2
∑
n≥1

2En+1
xn

n!
= (2

∑
n≥1

En+1
xn

n!
) + 2E0 − 2E0 = 2

∑
n≥0

En+1
xn

n!
− 2E0.

Let F (x) =
∑
n≥0

En
xn

n!
, then we have dF (x)

dx
=
∑
n≥1

En
xn−1

(n−1)!
. Setting m = n− 1, we

have dF (x)
dx

=
∑
m≥0

Em+1
xm

m!
. Defining E0 = E1 = 1, implies that the LHS is

2
∑
n≥0

En+1
xn

n!
= F ′(x)− 2.

For the right-hand side (RHS) of Equation 1.1, we have:

∑
n≥1

∑
k=0

(
n

k

)
EkEn−k.

By summing and subtracting the term with n = 0, which evaluates to 1, we
obtain the convolution formula, resulting in:

∑
n≥0

∑
k=0

(
n

k

)
EkEn−k − 1 = F 2(x)− 1

Therefore, we rewrite equation 1.1 as the following differential equation:

2F ′(x)− 2 = F 2(x)− 1,

whose unique solution is F (x) = sec(x) + tan(x).
Recall that F (x) =

∑
n≥0

En
xn

n!
, which means that Ek = [x

k

k!
]F (x). Moreover, since

|Wn| = 2En, we have:

|Wn| = 2

[
xn

n!

]
F (x) = 2

[
xn

n!

]
(secx+ tanx)

as desired.

Since F is a sum of two analytical functions, and F has a radius of convergence
of R = π

2
, F is analytical and we obtain the following asymptotic approximation for

k → ∞:

[xk]F (x) ≈
(
2

π

)k+1

,

7



which implies that |Wn| ≈ 2
(
2
π

)n+1
n!.

1.2 Graphs

In this section we present a short history of Graph Theory, as well as definitions and
notations in order to familiarize the reader with the terminology that we use in this
dissertation.

The origin of Graph Theory can be traced back to the first half of the 18th
Century, when L. Euler presented his solution to the Königsberg problem in [21].
The Königsberg problem asks wether there exists a continuous walk that crosses
each of the seven bridges of Königsberg exactly once. In his proof, even though not
drawing, L. Euler glanced on some important properties of a structure that today
is known as a graph.

In Figure 1.1 we present a representation of the Königsberg bridges. In his proof,
Euler showed when such walk could exist, noting that if there are more than two
areas to which an odd number of bridges lead, then such a journey is impossible.
Moreover, L. Euler noted that if the number of bridges is odd for precisely two
areas, then the walk is possible if it starts in either of these two areas; and if there
are no areas to which an odd number of bridges lead, then the journey can be
accomplished starting anywhere. In conclusion, L. Euler proved that there are no
walks that satisfy the Königsberg problem.

Figure 1.1: An illustration of the seven Königsberg bridges.

Throughout the text, an ordered pair of elements is denoted by (e1, e2), while
an unordered pair of elements is denoted by {e1, e2}. This means that the pair
{e1, e2} = {e2, e1} while (e1, e2) ̸= (e2, e1).

Formally, a graph G is an ordered pair (V,E) such that V is the set of vertices and
E is a multiset, which is a set that allows repetitions, of edges, which are unordered
pairs of vertices. A graph is called simple if there are no repeated edges in E, i.e.,
E is a set, and there are no loops in E, which is an edge of the form {v, v}, for
v ∈ V (G). A directed graph is defined similarly, but taking E as a multiset of
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ordered pairs, which means that (x, y) ̸= (y, x).
For a given graph G = (V,E), the set V = V (G) is the vertex set of G, and

E = E(G) is its edge set. The order of G is the number |V (G)|, often represented
by n, and the size of G is the number |E(G)|, often represented by m. If x, y are
vertices, then an edge {x, y} is said to join the vertices x, y and is often denoted
simply by xy; the vertices x and y are end-vertices of xy. If {x, y} ∈ E(G), then we
say that x and y are adjacent vertices of G or neighbors. Two edges are adjacent if
they have exactly one common end-vertex. For a vertex v ∈ V (G) we define the set
NG(v) as the set with all the vertices u ∈ V (G) that are adjacent to v, also known
as the neighborhood of v.

Naturally, we can represent a graph G with a figure consisting of the vertices
joined by a simple line if such edge exists in E(G). In the case of a directed graph, an
arrow is drawn instead of a simple line, to represent the difference between the edges
(u, v) and (v, u). For example, the graph with vertex set {A,B,C,D} and edge set
{AB,AD,AD,BC,BD,CD,CD} is represented in Figure 1.2. Note that this figure
captures the structure related to the Königsberg problem, where the masses of land
are the vertices and the bridges are the edges.

A

D

C

B

Figure 1.2: A Graph representation of the Königsberg bridges.

Fix a graph G, for a given vertex v ∈ V (G), we call the degree of v, denoted
by dG(v), the number of edges e ∈ E(G) that contains v. A vertex u ∈ V (G) with
d(u) = 1 is called a leaf of G, and a vertex u with d(u) = |V (G)| − 1 is called a
universal vertex. We shall denote the maximum degree of a graph G by ∆(G) and
the minimum degree by δ(G). Let d(G) be the average degree of a given graph G,
that is:

d(G) =
1

|V (G)|
∑

v∈V (G)

dG(v).

A very simple statement is the following lemma, which introduces the double
counting argument.

Lemma 1.2. (Handshaking lemma) Given a graph G = (V,E), we have that:
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∑
v∈V (G)

dG(v) = 2|E(G)|. (1.2)

Proof. Consider the pair (v, e) such that v ∈ V (G) and e ∈ E(G), with v ∈ e. We
can count the number of such pairs in two different ways. Note that, by definition,
there are dG(v) edges containing v, and hence, every vertex v is contained in dG(v)

pairs. On the other hand, every edge contains two different end-vertices, which
means that there are 2|E(G)| of such pairs. Therefore, these quantities must be
equal, leading to the desired result.

As a corollary, we have that for any graph G, the number of vertices v ∈ V (G)

with d(v) ≡ 1 (mod 2) is even; otherwise, the left hand side of the Equation (1.2)
would be odd, contradicting the lemma.

We now proceed to some important definitions that formalize the notion of find-
ing a structure inside a graph. A graph G is isomorphic to a graph H, denoted by
G ≃ H, if there exists a bijective function φ : V (G) → V (H) such that two vertices
u, v ∈ V (G) are adjacent in G if and only if φ(u) and φ(v) are adjacent in H. In this
case, we say that the function φ is an isomorphism. Note that Figure 1.1 and 1.2
are isomorphic by the identity function φ(x) = x, for x ∈ {A,B,C,D}.

Given a graph G, we call a graph H a subgraph of G, or simply say that G contains
H, denoted by H ⊆ G, a graph for which V (H) ⊆ V (G) and E(H) ⊆ E(G). For
graphs T and G, if there is an isomorphism φ of T into H ⊆ G, we say that there is
an embedding of T into G, or simply say that there is a copy of T in G. If a graph
G does not contain a copy of T , we say that G is T -free.

Another important idea is to decompose the graph in substructures, usually
disjoint, that presents some properties. A graph G is bipartite if we can write
V (G) = V1 ∪ V2 for some sets V1, V2, such that V1 ∩ V2 = ∅, Vi ̸= ∅, and for
u, v ∈ Vi, u and v are not adjacent, for i ∈ {1, 2}. A graph G is k-partite if we can

write V (G) =
k⋃

i=1

Vi, for some sets Vi, for i ∈ [k], such that Vi ∩ Vj = ∅, Vi ̸= ∅, for

i ̸= j and for each part Vi, any pair of vertices u, v ∈ Vi is not adjacent.
We extend the definition of partition to coloring of either edges or vertices of a

graph, understanding that assigning a color is equivalent to assign the object to a
part of the partition. In this work, we consider only the case of vertex coloring.

Given a graph G = (V,E), the chromatic number of G, denoted by χ(G), is
the minimum number of colors for which the vertices in V can be assigned such
that no vertices of the same color is adjacent. It can be verified that χ(G) = 2 for
every bipartite graph G, by coloring each partition Vi with a different color. More
generally, χ(G) ≤ k for all k-partite graphs G.
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1.2.1 Special Graphs

Some special classes of graphs ought to be highlighted and defined. A graph G is
called empty if E(G) = ∅, and a graph G is called the null graph if V (G) = ∅.
These graphs do not seem very interesting by themselves, but it is important to
observe that every graph contains the null graph, and every graph on n vertices,
contains 2n empty graphs, including the null graph.

A graph is called complete if its edge set contains every possible edge. The simple
complete graph with n vertices is denoted by Kn. Since for each vertex v ∈ V (Kn)

there are n − 1 possible choices for an edge, excluding the loops, we have that
2|E(Kn)| = n(n− 1) and δ(Kn) = ∆(Kn) = n− 1. In Figure 1.3 we illustrate K12.

Figure 1.3: The complete graph K12.

Given a complete graph Kn, we create a tournament by assigning a direction for
each edge, thus transforming the undirected graph into a directed graph.

Given a graph G on n vertices, we denote by Gc the complement graph of G
which is defined as a graph on the same vertices as G but two vertices u, v ∈ V (Gc)

are adjacent in Gc if and only if they are not adjacent in G.
A graph G of size ℓ is called a path, denoted by Pℓ, if there is an ordering

{v1, . . . , vℓ+1}, of its vertices, for which its edges are {vi, vi+1}, for i ∈ [ℓ]. This
means that G can be illustrated as straight line, as seen in Figure 1.4a. Recall that
the size ℓ represents the number of edges in G, not to be confused with its number
of vertices.

Given a graph G = (V,E), the distance between two vertices u, v ∈ V (G),
denoted by dist(u, v) is the number of edges in a shortest path connecting them.
The diameter of a graph G, denoted by D(G) is the greatest distance between any
pair u, v ∈ V (G). If there is not a path connecting the two vertices, we define
dist(u, v) as being ∞.

A graph G is called connected if for every pair of vertices u, v ∈ V (G), there is
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a path from u to v using edges in E(G). A graph is, therefore, called disconnected,
if it is not connected, i.e., if there is at least one pair u, v ∈ V (G) for which there is
no path that begins in u and ends in v.

A graph is called a cycle on n vertices, denoted by Cn, if it consists of a path Pn−1,
with V (Pℓ) = {v1, v2, · · · , vn}, together with the edge {v1, vn}. This is illustrated in
Figure 1.4b. A graph G is called acyclic if it contains no cycle. We call the girth of
a graph G the length of the smallest cycle in G.

1

2

3

4

5

(a) Representation of a
labeled P4

(b) Representation of an
unlabeled C6

Figure 1.4: Illustration of a path and a cycle, as well as a labeled and an unlabeled
graph.

A graph is called a tree if it is connected and acyclic. We denote the family of all
trees on k vertices by Tk. The problem of enumerating trees is a well known problem
since the 19th Century. A solution for the case of labeled trees, in which you assign
for each vertex a different label, was proved by C. Borchardt [11], to be kk−2 in
1861. But a closed formula for the unlabeled case, in which you do not distinguish
its vertices, is not known. Still, there are certain special classes of trees that can be
enumerated explicitly even in the unlabeled case.

Given a tree T , the derived tree ∂T is the tree obtained from T by deleting all
of its leaves. We call a tree T a caterpillar if ∂T is a path. In 1973, F. Harary and
J. Schwenk proved the following enumeration theorem in [28].

Theorem 1.3. The number of non-isomorphic caterpillars with n ∈ N vertices is
given by

C(n) = [xn]
x3(1− 3x2)

(1− 2x)(1− 2x2)
= 2n + 2⌊n/2⌋.

Different proofs for this theorem can be found in [28].

Another well studied class of trees is the following. A tree S is a spider if it
has at most one vertex of degree greater than 2, which we call the center of S (if
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no vertex has degree greater than 2, then any vertex can be the center). A leg of
a spider is a path from its center to one of its leaves. Therefore, a path is a spider
with one or two legs.

Let P (n, k) denote the partition number of n in k summands, which is defined
as the number of ways of writing n as a sum of k positive integers. In this case,
two sums that only differ in the order of the summands are considered the same
partition. For example, we have that P (4, 2) = 2 since 4 = 3 + 1 = 3 + 1 and
4 = 2 + 2.

The following theorem is an enumerative result concerning spider trees.

Theorem 1.4. The number of non-isomorphic spiders with n ∈ N vertices is given
by

S(n) = 1 +
∑
k≥3

P (n− 1, k).

Proof. Consider a partition of n − 1 in k positive integers p1, p2, . . . , pk. We can
build a spider by starting with the center vertex and including a leg of size pi for
i ∈ [k]. Note that for k = 2 this construction is not injective since a spider with
two legs is just a path. Therefore, we consider only partitions with k ≥ 3, in which
different partitions results in non-isomorphic spiders. Moreover, since we can reverse
the construction to obtain the same partition of n−1 by removing the legs from the
center vertex, this construction implies in a bijection between both quantities. All
that is left is to include the spider which is isomorphic to the path, leading to the
desired result.

1.3 Representations of Permutations

In this section we explore three different ways to represent permutations. Through-
out this work, we mainly represent a permutation π, graphically, as a sequence of
the points (i, πi), for i ∈ [n], in the cartesian coordinate systems, and joining two
consecutive points.

Recall that for any permutation π ∈ Sn the complement permutation πc, and the
reverse permutation πr are defined, respectively, by having their i-th term defined
as

(πc)i = n+ 1− πi.

(πr)i = πn+1−i.

Note that you can also combine both transformations to obtain the reverse com-
plement (πc)r, which is equal to the complement reverse (πr)c, and, for this reason,
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we denote it by πrc. For example, given the permutation π = 1, 2, 4, 3, we have that
πc = 4, 3, 1, 2, πr = 3, 4, 2, 1, and πrc = 2, 1, 3, 4.

1

2

4

3 3

4

2

1

4

3

1

2 2

1

3

4

Figure 1.5: For π = 1243, the permutations π (top left), πr (top right), πc (bottom
left), πrc (bottom right).

A very interesting symmetry arises from these transformed permutations: the
fact that they can be obtained from the original permutation π either by a reflection
over the x axis, obtaining the complement permutation, by a reflection over the y

axis, obtaining the reverse permutation, or both, resulting in the reverse complement
permutation.

Another way to represent a permutation π is through what is called a permutation
graph. In order to draw the permutation graph, one first write π in its two-line
notation. Then, for each number in the first line, we draw a line to itself in the
second line. We define the permutation graph to be a graph whose vertices represents
this lines and in which two vertices are adjacent if their lines intersect. For the
permutation π = 24315, we have:

2 4 3 1 5

1 2 3 4 5

Since the line between the vertices with the label 1 intersected the lines for the
vertices 2, 3, and 4, the vertex 1 has degree 3 in the permutation graph. Doing this
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analysis for every other vertex results in the following permutation graph:

1

2

5 3

4

Figure 1.6: Permutation Graph of π = 24315.

In other words, fixed a permutation π = π1π2π3 . . . πn, with π ∈ Sn, the associ-
ated permutation graph G = (V,E) has V = [n], and ij ∈ E if and only if i < j and
πi > πj, for all i ̸= j.
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2 | Roller Coaster Permutations

The concept of Roller Coaster permutations was introduced by T. Ahmed and H.
Snevily in [2]. Informally, a Roller Coaster permutation is a permutation that, along
with all of its subsequences, maximizes the amount of changes between ascents and
descents. The authors provided a number of conjectures concerning enumerative
and structural properties of Roller Coaster permutations as well as showing its
connections with the problem of partition numbers of a permutation and forbidden
subpermutations.

To formally introduce Roller Coaster permutations, we need some auxiliary defi-
nitions. Let i(τ) (resp. d(τ)) be the number of maximal increasing (resp. decreasing)
subsequences of consecutive numbers in τ , where such a sequence consists of at least
two numbers. Let id(τ) = i(τ) + d(τ), and let X(π) denote the set of the subse-
quences τ ⊆ π with at least three elements. Note that the size of the set X(π) can
be obtained from enumerating all the subsequences of π and removing subsequences
of length 0, 1, and 2, hence

|X(π)| = 2n − n− 1−
(
n

2

)
. (2.1)

Finally, we define the function t : Sn → N as

t(π) =
∑

τ∈X(π)

id(τ). (2.2)

For illustration purposes, we evaluate it on two permutations of S4:

t(3412)=id(3412)+id(341)+id(342)+id(312)+id(412)

= 3 + 2 + 2 + 2 + 2 = 11.

t(1234)=id(1234)+id(123)+id(124)+id(134)+id(234)

= 1 + 1 + 1 + 1 + 1 = 5.

In a certain way, t measures the “alternation” of a given permutation, by counting
the ascents and descents of the permutation and of all of its meaningful subsequences.
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For this reason, we refer to t as the measure of alternation of a permutation, even
though it is not precisely a mathematical measure. Seldom, we refer to t(π) simply
as the t-value of π.

Recall that Sn is the set of all permutations of a set of n elements. Since the
set Sn is finite, there is a maximum value of t for any given n, hence we define
tmax(n) = maxπ∈Sn t(π), and say that a permutation π is a Roller Coaster if t(π) =
tmax(n). Lastly, we define RC(n) as the set of all the Roller Coasters of length
n. In the example above, the permutation 1234 is not a Roller Coaster because
t(1234) < t(3412). On the other hand, it can be verified that 3412 is indeed a Roller
Coaster by checking that tmax(4) = 11.

Recall that for a permutation π, the reverse permutation and the complement
permutation are denoted by πr and πc respectively. A trivial fact is that for π ∈ Sn,
the function t satisfies:

t(π) = t(πc) = t(πr) = t(πrc),

which implies that |RC(n)| ≥ 4 for all n ≥ 3.
T. Ahmed and H. Snevily obtained experimental results for tmax for n ≤ 13, and

a construction that provides lower bounds for n ≥ 14 in [2]. For n = 3, 4, · · · , 24 the
authors presented the following values for tmax and cadidates for tmax (in italic):

tmax = [2, 11, 37, 106, 270, 653, 1523, 3480, 7768, 17123, 37405, 81350,

174954, 374409, 798471, 1700036, 3596124, 7588303,

15970785, 33596706, 70310126, 146867861]

The authors also provided examples of Roller Coasters for n ≤ 13. In Figure 2.1,
we present graphical examples for each permutation in RC(n) for 3 ≤ n ≤ 8.
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Figure 2.1: Roller Coaster permutations for 3 ≤ n ≤ 8.

Based on these results, T. Ahmed and H. Snevily conjectured the following prop-
erties regarding the structure of the Roller Coaster permutations in [2].

Conjecture 2.1. For a given n ∈ N, if π ∈ RC(n), then π is an alternating
permutation.

The authors also conjectured the following values for π1 and πn.

Conjecture 2.2. Given a positive integer n, there is π ∈ RC(n) such that π1 =

⌊n/2⌋ and πn = ⌊n/2⌋ + 1

This conjecture motivates a constructive approach to find Roller Coaster permu-
tations, in which one choose π1 and πn as the numbers close to n/2 and choose πi,
for i close to n/2 as the extremes 1 and n, to locally maximize the alternation of
the permutation π. Unfortunately, after several attempts we were unable to obtain
satisfactory results with such algorithms since for every pattern that we thought we
spotted, the next Roller Coaster permutation would avoid it, proving to be quite
elusive objects.

In 2017, W. Adamczak [1] published a tentative proof for Conjecture 2.1 based
on the argument that for any permutation π = τ, πi, πi+1, πi+2, σ, in which (a)
the subsequence σ is an alternating sequence; and (b) πi, πi+1, πi+2 is a increasing
or decreasing sequence, the operation of switching πi with πi+1 always yields a
permutation with a greater t-value. After a careful review of his proof, we found a
counterexample for this argument. Consider the permutation π = 7, 3, 5, 6, 4, 8, 1.
One may compute and verify that t(π) = 240. If we consider the permutation
π′ = 7, 3, 6, 5, 4, 8, 1, by switching the position of the 5 with the 6, one may compute
that t(π′) = 236. This implies that
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240 = t(π) > t(π2) = 236.

Alongside this proof attempt, the author attempted to prove other theorems, but,
unfortunately, used the same argument. For this reason, we present these results as
conjectures.

Conjecture 2.3. There is a permutation π ∈ RC(n), such that:

(i) {πi : i is odd} = {n
2
+ 2, . . . , n}

(ii) {πi : i is even} = {1, . . . , n
2
− 1}

Conjecture 2.3 explores the structure of the permutation by characterizing the
subset of the odd-indexed terms and even-indexed terms. This motivates a greedy
algorithm that tries to maximize the measure of alternation locally for each of these
subsequences and then concatenates them. One example would be to pick τ, σ ∈
RC(n), then shifting the permutation τ , obtaining τ ′ = τ1 + n, τ2 + n, . . . , τn + n,
then merging together τ ′ and σ, building the permutation π = τ ′1, σ1, τ

′
2, σ2 · · · .

Unfortunately, this method yields permutations for which its t-value is less than
tmax(2n).

To present the next conjecture, we first need to define some auxiliary terms.
Given a permutation π = π1π2 . . . πn, the subsequence πODD is the sequence
{πi}i=2k+1, for 1 ≤ k ≤ ⌊n−3

2
⌋. Analogously, the subsequence πEVEN is the

sequence {πi}i=2k for 1 ≤ k ≤ ⌊n−1
2
⌋, for example, let π = (1, 2, 3, 4, 5, 6, 7, 8), we

have πODD = (3, 5, 7) and πEVEN = (2, 4, 6), skipping the first and last terms of the
permutation. A permutation π is called recursively alternating if either |π| ≤ 2 or
both of the following holds.

(i) π is alternating;

(ii) πODD and πEVEN are recursively alternating;

This means that for a permutation π that is recursively alternating, the sub-
sequence πODD,ODD is alternating, as well as the πEVEN,ODD, πEVEN,EVEN, and
πODD,EVEN, πODD,ODD,ODD, et cetera. The second conjecture we present, from W.
Adamczak [1], is the following:

Conjecture 2.4. If π ∈ RC(n), then π is recursively alternating.

This conjecture is an even stronger version of Conjecture 2.1, since it implies that
the permutation is alternating and also some of its subsequences are alternating.
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Lastly, we present the following conjecture, due to T. Ahmed and H. Snevily [2]
regarding the behavior of tmax(n) for n → ∞. Based on the exact and conjectured
values of tmax, one can define L(n) = tmax(n+1)

tmax(n)
, which for 4 ≤ n ≤ 23, gives us:

L : [3.364, 2.865, 2.547, 2.418, 2.332, 2.285, 2.232, 2.204, 2.184, 2.175

2.151, 2.140, 2.133, 2.129, 2.115, 2.110, 2.105, 2.104, 2.093, 2.089].

Question 2.5. Does the limit

lim
n→∞

L(n) = lim
n→∞

tmax(n+ 1)

tmax(n)

exist and is it 2?

If the answer to Question 2.5 is affirmative, this would imply that for large values
of n, the number of peaks and valleys for a permutation π ∈ RC(n + 1) would be
essentially the double of the number of peaks and valleys of π ∈ RC(n). Moreover,
the existence of the limit limn→∞ L(n) suggests some regularity in the behavior of
the function t.

This chapter is structured in the following way: In Section 2.1, we present the
main result of this chapter, an alternate definition that allows us to redefine the
measure of alternation of a Roller Coaster permutation, simplifying the method to
find them.

In Section 2.2, we present an Integer Linear Programming (ILP) model based
on the reformulation of the function t, as well as an extended version that includes
constraints based on Conjectures 2.1 and 2.3. We also present new examples of Roller
Coaster permutations when 14 ≤ n ≤ 17, together with Roller Coaster candidates
when 18 ≤ n ≤ 40, which were obtained with the extended ILP. This results provide
empirical evidence in concordance with Conjecture 2.4 and Question 2.5.

Moreover, in Section 2.3, we explore some alternative problems concerning Roller
Coaster permutations based on the number of triangles in a permutation. We also
motivate the inverse problem of determining a permutation given how many triangles
it contains.

In Section 2.4, we present some properties of the representation of a Roller
Coaster permutation through tournaments, motivating the search to reduce the
problem of evaluating the function t to the problem of matrix multiplication. More-
over, we present some properties of the associated permutation graph as well as a
structural conjecture regarding the connectivity of such graphs.

Finally, in Section 2.5, we conclude the chapter, restating the contributions
achieved to this problem, as well as presenting a table containing improvements
on the lower bounds for 14 ≤ n ≤ 40, found with the proposed extended ILP model.
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It is worth mentioning that part of this work was published and presented at the
“VI Encontro de Teoria da Computação” in 2021 [12].

2.1 Fast computation of t

Recall that t(π) =
∑

τ∈X(π) id(τ). This definition suggests a θ(2n) algorithm to
compute t, thereby taking O(2nn!) time to explore every permutation of length n in
order to obtain tmax(n).

The main result of this section is the following identity.

Theorem 2.6. Let π ∈ Sn. Then:

t(π) = |X(π)|+
∑

1≤i<j<k≤n

2n−(k−i+1)∆(πi, πj, πk). (2.3)

In order to prove Theorem 2.6, we first prove the following lemma, that states
an alternative way to evaluate id(π).

Lemma 2.7. Let π ∈ Sn. Then id(π) = 1 + p(π) + v(π).

Proof. Let r = id(π), and let π1, π2, . . . , πr be the maximal increasing and de-
creasing contiguous subsequences of π, in the order that they appear in π, where
πi = πi

1, . . . , π
i
si
. Fix i ∈ {2, · · · , r}. Note that πi−1

si−1 = πi
1. By the maximality of

πi, we have that πi is increasing if and only if πi−1 is decreasing. This implies that
πi−1
si−1π

i
1π

i
2 is either a peak or a valley. Moreover, these are the only peaks and valleys

of π. Therefore, p(π) + v(π) = r − 1 = id(π)− 1.

This lemma gives us another way to define the measure of alternation, i.e., the
function t. The proof of Theorem 2.6 goes as following.

Proof. First, by Lemma 2.7, we have

t(π) =
∑

τ∈X(π)

id(τ) =
∑

τ∈X(π)

(1 + p(τ) + v(τ)) = |X(π)|+
∑

τ∈X(π)

p(τ) + v(τ).

Now, we double count the cardinality of the following set:

E = {(τ, σ) : τ = τ1 · · · τr ∈ X(π), σ = τiτi+1τi+2, 1 ≤ i ≤ r−2 such that ∆(σ) = 1}.

Let d1(τ) := |{(x, y) ∈ E : x = τ}| and d2(σ) := |{(x, y) ∈ E : y = σ}|. Clearly∑
τ∈X(π) d1(τ) = |E| =

∑
σ∈X(π),|σ|=3 d2(σ), and d1(τ) is the number of triangles of

τ , i.e., d1(τ) = p(τ) + v(τ). Note that, for any subsequence σ = πiπjπk of π for
which ∆(σ) = 1, the pair (w1σw2, σ) ∈ E, for every w1 ⊆ π1 · · · πi−1 and w2 ⊆
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πk+1 · · · πn. Therefore, d2(σ) = 2n−(k−i+1), which is the number of permutations
w1σw2. Consequently,∑
σ∈X(π),|σ|=3

d2(σ) =
∑
i<j<k

∆(πi, πj, πk)d2(πiπjπk) =
∑

1≤i<j<k≤n

2n−(k−i+1)∆(πi, πj, πk).

Therefore, we have:∑
τ∈X(π)

(p(τ) + v(τ)) = |E| =
∑

1≤i<j<k≤n

2n−(k−i+1)∆(πi, πj, πk), (2.4)

which leads to the desired result.

We can rewrite Equation 2.3 by setting b = k − i + 1, the basis of the triangle
πi, πj, πk, and considering the function ∆b(π) that counts the number of triangles in
π with basis b:

t(π) =
n∑

b=3

2n−b∆b(π) + |X(π)|. (2.5)

Note that Equation 2.5, shows that a triangle with a smaller basis contributes
more to t(π) than a triangle with larger basis. This supports Conjecture 2.1 since
triangles with basis 3 refers to the peaks and valleys of a permutation, and an
alternating permutation has the maximum number of both peaks and valleys.

In the same way, Equation 2.5 supports Conjecture 2.2, since a naive way to
maximize the number of triangles of length n−3 is to set π1 = ⌊n

2
⌋ and πn = ⌊n

2
⌋±1,

which would mean that every other number πi would make a triangle with π1 and
πn, since there is not an integer between them.

Observe that given b ≥ 3, and a permutation with length n, there are at most
(b − 2)(n − (b − 1)) triangles with basis b in π. Since for every triangle of basis b,
there are b−2 numbers between the endpoints of the basis and there are (n−(b−1))

possible choices for these endpoints. This gives us the following upper bound for
tmax(n):

tmax(n) ≤ |X(π)|+
n∑

b=3

2n−b(b− 2)(n− (b− 1)) =

= 2n−1(n− 4) + n+ 2 + 2n − n− 1−
(
n

2

)
=

=
1

2
(2n − (n+ 1))(n− 2).

Note that no permutation π ∈ RC(5) contains every triangle of basis 4. For
example, in the permutation π = 24153, the triple 2, 4, 5 is not a triangle. Since the
number of triangles of different bases is already maximized, it cannot swap a triangle
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of a different basis for a triangle of basis 4, which means that π, is in a certain way,
triangle saturated. Similarly, we notice that any permutation π ∈ RC(6) contains
two of such triples. For example, the permutation π = 326154 contains the triples
321 and 654 that are not triangles. For permutations of RC(7) there are three of
such triples and for any permutation of RC(8), there are seven triples that are not
triangles. As we can see in the permutation 43718265, triples: 431, 378, 126, 865, of
basis 4, are not triangles, and there are 478, and 125 of basis 5 and 432 of basis 6.
This idea could further be explored to improve the upper bound for tmax, but due
to time constraints we shall leave it for future work.

Recall that L(n) = tmax(n+1)
tmax(n)

, and let M(n) = maxπ∈Sn

n∑
b=3

∆b(π)2
n−b. We have:

L(n) =
tmax(n+ 1)

tmax(n)
=

2n+1 − n− 2−
(
n+1
2

)
+M(n+ 1)

2n − n− 1−
(
n
2

)
+M(n)

Multiplying and dividing by 1/2n, we have:

L(n) =
2n

2n
tmax(n+ 1)

tmax(n)
=

2 +
−n−2−(n+1

2 )
2n

+M(n+ 1)/2n

1 +
−n−1−(n2)

2n
+M(n)/2n

If we prove that M(n + 1) ∈ o(2n), then we have that the limit lim
n→∞

L(n) = 2.
Unfortunately, our best upper bound gives M(n+ 1) ∈ O(n2n), which implies that
lim
n→∞

L(n) ≤ ∞. This motivates further research for better upper bounds for M(n).

2.2 An Integer Linear Program

A Linear Program is a mathematical modelling technique to write a problem as to
find the maximum of a linear function which is subject to linear constraints. The
linear function that we try to maximize is called the objective function of the model.
Consider a function f : X ⊆ Rn → R, as an objective function. If the domain X is
restricted to the integers, we call the model a Integer Linear Program (ILP). In this
section we present an ILP model to obtain Roller Coasters of a given size n.

The model’s objective function is derived from function t in Theorem (2.3) and
the main integer variable x = (x1, x2, ..., xn) represents the permutation itself. We
use auxiliary binary variables pi,j,k, vi,j,k with 1 ≤ i < j < k ≤ n, and wi,j with
1 ≤ i < j ≤ n, where pi,j,k (resp. vi,j,k) indicates whether xi, xj, xk is a peak (resp.
a valley), and wi,j indicates whether xi > xj. That is, the binary variables are equal
to 1 if their associated property is satisfied and 0 otherwise.

For (x1, . . . , xn) to be a permutation, we must have xi ̸= xj, for every i ̸= j. This
constraint is expressed by Equations (2.6b) and (2.6c). For xixjxk to be a triangle,
xixjxk must be either a peak, for which we have xj > xi and xj > xk, and can be
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expressed by equations xj ≥ xi − n(1− pi,j,k) + 1 and xj ≥ xk − n(1− pi,j,k) + 1; or
a valley, for which we have xj < xi and xj < xk, and can be expressed by equations
xj ≤ xk + n(1 − vi,j,k) − 1 and xj ≤ xi + n(1 − vi,j,k) − 1. These constraints are
denoted by PVi,j,k (see Equation (2.6d)).

max t(x) =
∑

1≤i<j<k≤n

2−(k−i+1) (pi,j,k + vi,j,k) (2.6a)

s.t. wi,j + wj,i = 1, ∀ i ̸= j, (2.6b)
xi ≥ xj + n(wi,j − 1) + 1, ∀ i ̸= j, (2.6c)
PVi,j,k, ∀ i < j < k. (2.6d)

Model 2.2: An Integer Programming Model for finding Roller Coasters.

Unfortunately, we were not able to run Model 2.2 for n ≥ 18. But we were able
to extend it by including new constraints based on Conjectures 2.1, and 2.3, which
characterize the structure of the Roller Coaster permutations and reduce the feasible
region of the ILP.

Observe that assuming Conjecture 2.1 holds, we can obtain an upper bound for
the number of Roller Coaster permutations, since Theorem 1.1 gives an approxi-
mation for |Wn|, the set of the alternating permutations. By Theorem 1.1, we can
approximate the probability that a permutation of length n, obtaining

|Wn|
|Sn|

≈ 2

(
2

π

)n+1
n!

n!
= 2

(
2

π

)n+1

,

which converges to 0 when n → ∞. Therefore, a model with the additional
constraint that the permutation is alternating tends to converge faster as n grows,
since the feasible region is smaller. If Conjecture 2.1 holds, it also means that the
Roller Coaster permutations become really scarce for large n.

Additionally, using Conjecture 2.3 as a set of additional constraints, which is
naturally translated to xi ≥ n/2 when i is even, and xi < n/2 when i is odd, as in
Equations 2.7d and 2.7e, we reduce the feasible region further. This corresponds to
the following model.
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max t(x) =
∑

1≤i<j<k≤n

2−(k−i+1) (pi,j,k + vi,j,k) (2.7a)

s.t. wi,j + wj,i = 1, ∀ i ̸= j, (2.7b)

xi ≥ xj + n(wi,j − 1) + 1, ∀ i ̸= j, (2.7c)

xi ≥ n/2 ∀ i even, (2.7d)

xi < n/2 ∀ i odd, (2.7e)

PVi,j,k, ∀ i < j < k. (2.7f)

Model 2.3: An Integer Programming Model for finding Roller Coasters with addi-
tional constraints based on Conjecture 2.3.

2.2.1 New Bounds on Roller Coaster Permutations

Running Model 2.2, we obtained the following Roller Coaster permutations for 14 ≤
n ≤ 17, confirming the construction presented by T. Ahmed and H. Snevily in [2]
for n = 14, 15, 16, and improving their construction in the case n = 17.

Table 2.1: Permutations found with Model 2.2 for n = 14,. . . ,17.

N
14 [7, 11, 3, 13, 5, 9, 1, 14, 6, 10, 2, 12, 4, 8]
15 [7, 12, 3, 14, 5, 10, 1, 15, 6, 9, 2, 13, 4, 11, 8]
16 [8, 12, 4, 14, 2, 10, 6, 16, 1, 11, 7, 15, 3, 13, 5, 9]
17 [8, 14, 3, 15, 6, 10, 2, 17, 7, 12, 1, 16, 5, 11, 4, 13, 9]

These permutations respectively correspond to the following values of tmax:

tmax = {81350, 174954, 374409,798783}

Since Model 2.2 does not include the additional constraints based on Con-
jectures 2.1 and 2.3, these results are indeed optimal. In particular, the value
tmax(17) = 798783 shows an improvement on the lower bound given by T. Ahmed
and H. Snevily [2]. Model 2.3, on the other hand, contains additional constraints
based on Conjecture 2.3 which makes the feasible region smaller. For this reason, it
yielded new permutations for n up to 40 (see Table 2.5), with the same computa-
tional power. These new permutations improved some of the lower bounds on tmax

known so far (see Table 2.3).
Note that if Conjecture 2.3 holds, then the permutations found are indeed Roller

Coasters, and their respective values of t are tmax. It’s worth mentioning that the
experiments were coded on Sagemath [42] and we also used the Gurobi solver [27].

In Table 2.2, we present the Roller Coaster candidates obtained for 18 ≤ n ≤ 24.
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Table 2.2: Permutations found with Model 2.3 for 18 ≤ n ≤ 24.

N
18 [9, 14, 4, 16, 7, 11, 2, 18, 6, 13, 1, 17, 8, 12, 3, 15, 5, 10]
19 [9, 15, 5, 17, 2, 12, 8, 19, 3, 13, 6, 16, 1, 11, 7, 18, 4, 14, 10]
20 [10, 15, 5, 18, 2, 12, 8, 20, 4, 14, 7, 17, 1, 13, 9, 19, 3, 16, 6, 11]
21 [10, 17, 4, 19, 8, 13, 1, 21, 6, 15, 3, 18, 9, 12, 2, 20, 7, 14, 5, 16, 11]
22 [11, 17, 5, 20, 8, 14, 2, 22, 10, 16, 4, 19, 7, 13, 1, 21, 9, 15, 3, 18, 6, 12]
23 [11, 17, 6, 21, 3, 15, 9, 23, 1, 16, 7, 19, 4, 13, 10, 22, 2, 14, 8, 20, 5, 18, 12]
24 [12, 18, 6, 21, 3, 15, 9, 23, 1, 17, 11, 20, 5, 14, 8, 24, 2, 16, 10, 22, 4, 19, 7, 13]

For n ≥ 25, the Roller Coaster candidates are presented in the end of the chapter.
The bounds for tmax obtained with Model 2.3 are presented in Table 2.3.

The t-values obtained from the construction given by T. Ahmed and H. in
Snevily [2] are in the lines indicated by ‘AS ′ while the t-values obtained by Model 2.3
are present in the lines indicated by ‘BN’. Bold values represent improvements to
the known t-values and known lower bounds.

Table 2.3: Table containing the t-value obtained as in [2] and by Model 2.3, for n =
14,. . . ,40. Improved lower bounds are presented with bold text.

14 15 16 17 18
AS 81350 174954 374409 798471 1700036
BN 81350 174954 374409 798783 1700036

19 20 21 22 23
AS 3596124 7588303 15970785 33596706 70310126
BN 3597020 7588303 15970785 33596706 70310126

24 25 26 27 28
AS 146867861 306492900 639129568 1327542841 2755084935
BN 146867861 306500899 639198976 1328781760 2758443963

29 30 31 32 33
AS 5720021634 11863992638 24524469439 50593221917 104565405932
BN 5720153893 11863992638 24525731250 50650675297 104569114183

34 35 36 37 38
AS 215826275292 444271587981 914139811651 1881877624386 3872524536090
BN 215844113148 444587412964 914999923559 1882036116393 3872525917922

39 40
AS 7948257224143 16292370258569
BN 7949294221494 16308000242795

Observe that this shows that the construction given by T. Ahmed and H. Snevily
is a very good approximation for this values of n, even finding an optimal value in
the case of n = 30.

2.3 On the Number of Triangles in a Permutation

Recall that by Theorem 2.6, given a permutation π ∈ Sn, we can evaluate t(π) with
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t(π) =
n∑

b=3

2n−b∆b(π) + |X(π)|.

This gives us a natural way to decompose a permutation according to the number
of triangles it contains with each basis b. For example, the permutation 312 contains
a single triangle of basis 3. And the permutation 2143, contains two triangles of
basis 3 and two triangles of basis 4. Let T denote the total number of triangles in a
permutation π, that is:

T(π) =
∑
b

∆b(π).

Question 2.8. What is the expected behavior for T(π) ?

Moreover, we can define a decomposition T : Sn → Nn−2 given by

T (π) = (∆3(π),∆4(π), · · · ,∆n(π)).

We were able to compute T for every permutation π ∈ RC(n), for n ≤ 12,
given by T. Ahmed and H. Snevily [2], and for each n, they all have the same
decomposition. The following table presents the evaluation of T over the Roller
Coaster permutations for 3 ≤ n ≤ 12.

Table 2.4: Table containing T (π) for π ∈ RC(n) for 3 ≤ n ≤ 12.

n T (π)

3 (1)
4 (2,2)
5 (3,3,3)
6 (4,4,6,4)
7 (5,5,8,7,5)
8 (6,6,10,10,10,6)
9 (7,7,15,9,12,9,7)
10 (8,8,18,12,16,12,12,8)
11 (9,9,20,15,22,14,18,13,9)
12 (10,10,22,18,28,16,24,18,16,10)

Observe that if ∆3(π) = n− 2, for all π ∈ RC(n), for all n, then π is alternating
and hence Conjecture 2.1 holds, since it represents an alternating sequence. More-
over, proving that ∆n(π) = n, for π ∈ RC(n), for all n, is equivalent to proving that
π1 = πn ± 1.

A very difficult problem arises with the inverse operation, that is, how can we
construct a permutation π ∈ Sn that has a given triangle decomposition T ′ =

(∆3,∆4, · · · ,∆n). A sequence of integer is a realizable triangle sequence, if there is
a permutation π ∈ Sn such that T (π) = T ′. An analogous problem to the Graph
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Realization problem, which asks which sequences of integers can be represented as
the degree sequence of a finite simple graph on n vertices, arises:

Question 2.9. Which sequences of integers are realizable triangle sequences?

2.4 Alternative Representations of Roller Coasters

In this section, we present some natural representations of Roller Coaster permuta-
tions that could be explored further in light of different ideas. We nevertheless try
to motivate them by relating to other well studied areas of Combinatorics.

2.4.1 Roller Coaster as Tournaments

The first representation is called the tournament representation of a permutation,
defined in the following way: given a permutation π ∈ Sn, we build a directed graph
that has a vertex for each entry πi and a directed edge from πi to πj for all j > i.
We illustrate the tournament representation of π = 24153 In Figure 2.4.

2

4

1

5

3

Figure 2.4: Digraph Representation of π = 24153.

We can further explore this definition by giving a weight to each edge related
to the difference of its endpoints. If we simply have that the weight w of an edge
(v1, v2) is w((v1, v2)) = v2 − v1 we would have that every edge in the tournament
with a positive weight represents an ascent and every edge with a negative weight
represents a descent. Then, we can write the adjacency matrix associated to the
tournament, denoted by M , in which each entry Mi,j equals to πj −πi, representing
the weight of the edge (πi, πj). This matrix has some interesting properties, namely:

• For all i, Mi,i = 0, since there are no loops.

• Let M(k) = Mk, each entry M(k)i,j represents the sum of the weights of all
the edges of all paths of length k between πi and πj in the tournament.
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We can build a normalized adjacency matrix N , where Ni,j ∈ {−1, 0, 1}, from M

by having each entry Ni,j =
Mi,j

|Mi,j | . Observe that in the tournament, as well as in the
normalized tournament, every triangle is a path of length 2 that has different signs
in the weights of its edges. In other words, a triangle consists of two 2 consecutive
edges e1, e2 for which w(e1)w(e2) = −1. This encourages, using fast algorithms for
matrix multiplication, the search for an algorithm with time complexity O(nlog2 7),
or even smaller, as show by J. Alman and V. Williams [4], for cosmically large values
of n, to evaluate tπ and could imply in a much faster way to find Roller Coaster
permutations.

2.4.2 Permutation Graphs of Roller Coasters

In this section we exhibit some interesting properties of the Roller Coaster permu-
tations when represented as permutation graphs.

It is known that the permutation graph of a permutation π is isomorphic to the
permutation graph of πrc, and the permutation graph G of a permutation π is the
complement Gc of the permutation graph of πc. For each π ∈ RC(n), we can select
one representative π of this equivalence class, and, removing πrc, πc and πr from
RC(n), construct the set SRC(n), that contains only one representative for each
symmetry through the Permutation Graphs.

For example, from T. Ahmed and H. Snevily [2], we have:

RC(5) = {24153, 31524, 25143, 32514, 41523, 34152, 35142, 42513}

We can simplify this set selecting the representative {24153, 25143}. These per-
mutations have the following permutation graphs:

Figure 2.5: Permutation graphs for 24153 (left) and 25143 (right).

Unfortunately, we were not able to relate in any way the permutation graphs
between these two representative nor the measure of alternation. Note that
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the permutation graph associated with the permutation π = n(n − 1) · · · 1 is
the complete graph, and the permutation graph associated with the permutation
πr = 1, 2, 3, . . . , n is the empty graph. This means that t(π) is not related with the
density of the permutation graph of π, since t(π) = t(πr).

Further exploration and analysis through the permutation graphs for π ∈ RC(n),
motivates the following conjecture.

Conjecture 2.10. For n ≥ 4, if G is a permutation graph of a permutation
π ∈ RC(n), then G is connected.

2.5 Conclusion

In this chapter, we presented an alternative and fast algorithm to calculate t, based
on the number of triangles in a permutation. This motivates a further study of
the decomposition of a permutation in triangles by reducing the problem to graphs
decomposition or other representations.

We also provided an Integer Linear Programming model to find Roller Coasters,
in which we were able to find new Roller Coasters for n ≤ 17, as well as an extended
ILP model that provided us with new lower bounds for tmax(n) for n ≤ 40. It is
worth mentioning that if proven, Conjecture 2.1, and 2.3, would imply that these
lower bounds are indeed optimal values for tmax, and hence that the candidates
presented are indeed Roller Coaster permutations for n ≤ 40.

Finally, we showed the problem of Roller Coaster permutations through differ-
ent points of view, stablishing connections with different fields of Combinatorics,
encouraging further study that may result in advancements in both Roller Coaster
permutations and other fields.
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3 | Extremal Graph Theory

The purpose of this chapter is to present classical results in Extremal Graph Theory
as well as some of the techniques used in their proofs, and its objective is to famil-
iarize the reader and serve as a foundation for Section 3.1, in which we cover one of
the main conjectures of this field.

The main goal of Extremal Combinatorics is to study problems where one should
determine the maximum or minimum possible cardinality of a finite collection of
objects that satisfies certain property.

We start with the following problem, in the context of Set Theory. A set A is
called sum-free if there exists no triple a, b, c ∈ A such that a + b = c. Note that
there is no restriction of a, b, c being different, therefore, the triple (1, 1, 2) counts
as a sum, since 1 + 1 = 2. As an example and motivational problem, we have the
following question

Question 3.1. What is the maximum cardinality of a sum-free set A ⊆ [n]?

Some simple sets that satisfies such property are

• {1, 3, 5, 7, . . . , ⌊n+1
2
⌋ − 1} – odd numbers;

• {⌊n
2
⌋+ 1, ⌊n

2
⌋+ 2, ⌊n

2
⌋+ 3, · · · , n} – the numbers greater than n/2.

Therefore, we can conclude that |A| ≥ ⌈n
2
⌉. But it is not clear that actually |A|

cannot be bigger than ⌈n
2
⌉. The following results shows that ⌈n/2⌉ is indeed tight.

Theorem 3.2. Let A ⊆ {1, 2, 3, . . . , n}, if |A| ≥ ⌈n
2
⌉+ 1, then A is not sum-free.

Proof. Suppose that A is a sum-free set with |A| ≥ ⌈n
2
⌉ + 1, and let c = maxx∈A x.

Consider the set B = c−A, defined as the set {c− a : a ∈ A}. Take B∗ = B \ {0}.
Note that |A| = |B∗|+ 1 ≥ ⌈n

2
⌉+ 1. Therefore, we have that |A|+ |B∗| ≥ 2⌈n

2
⌉+ 1,

which implies that |A ∩B∗| ≠ ∅ by the Pigeonhole Principle. Let x ∈ B∗ ∩ A, this
means that x = c− a for a, c in A, a contradiction.

This simple problem motivates the following question: which other properties
become unavoidable for sets greater than a certain size? Determining this threshold
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became one of the main themes studied in Extremal Combinatorics. In the following
sections, we present some classical results in Extremal Graph Theory, that deals with
this question in the context of graphs.

One of the first results in Extremal Graph Theory is Mantel’s theorem [? ],
proved in 1907, which says that any graph G = (V,E) with |V | = n and |E| ≤
⌊n/2⌋⌈n/2⌉ edges, contains at least one copy of K3.

Theorem 3.3 (Mantel, 1907). Let G be a graph on n vertices. If G does not contain
a copy of K3, then |E(G)| ≤ ⌊n/2⌋⌈n/2⌉.

This is clearly best possible, as one may partition the set of vertices into two
sets of size ⌊n/2⌋ and ⌈n/2⌉ and form the complete bipartite graph between them,
which has precisely ⌊n/2⌋⌈n/2⌉, and has no copies of K3.

Proof. Consider a K3-free graph G = (V,E) with n vertices. Choose an edge uv ∈ E.
Since G is K3-free, there are at most n− 1 edges adjacent to the edge uv. Consider
the graph G′ = G−{u, v}. Since G′ ⊆ G, G′ is also K3-free. By induction, we have

|E(G′)| ≤
(⌊n− 2

2

⌋)(⌈n− 2

2

⌉)
=
⌊n
2

⌋⌈n
2

⌉
− n+ 1.

Therefore, we obtain

|E(G)| ≤ |E(G′)|+ n− 1 ≤
⌊n
2

⌋ ⌈n
2

⌉
,

as desired.

This problem motivates the definition of the extremal number, denoted by
ex(n,H), which is the maximum number of edges in a graph G on n vertices that
is H-free for every graph H ∈ H. When H = {H}, we simply write ex(n,H). Fi-
nally, we call a graph G an H-extremal graph if |E(G)| = ex(n,H). This gives the
following reformulation of Theorem 3.3.

Theorem 3.4 (Mantel, 1907). For n ∈ N, ex(n,K3) =
⌊
n
2

⌋⌈
n
2

⌉
− n+ 1.

Consider graphs G and H with vG, eG (resp., vH , eH) denoting the number of
vertices and edges in G (resp., in H) and suppose vG ≥ vH . Observe that if eG =(
vG
2

)
, then G must contain a copy of H and if eG < eH , then G is H-free. In fact,

containing a graph as subgraph is a monotonic property, which means that if we
add edges to G, the graph H will not disappear. Therefore, we can conclude that
ex(vG, H) is well defined for all graphs H with 0 < eH <

(
vG
2

)
.

Even though such a number must exist, proving bounds for ex(n,H) can be
difficult. The next result was only proved in 1941, by P. Turán [44], generalizing
Mantel’s theorem.
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Theorem 3.5 (Turán, 1941). For m,n ∈ N, if m ≤ n, we have

ex(n,Km) =

(
1− 1

m− 1

)
n2

2
,

in the same work, P. Turán characterized the structure of such extremal graphs,
which are the complete (m− 1)-partite graphs for whose parts has sizes as equal as
possible, also known as Turán’s Graphs, and denoted by Tm(n), (see Figure 3.1). A
classical proof for Theorem 3.5, that can be found in [3], goes as follows.

Proof. Let G be a Km-free graph on n vertices and ex(n,Km) edges. Note that if
n ≤ m − 1, then G cannot contain any copy of Km and has at most

(
n
2

)
edges. So

in this case, we only have to prove that(
n

2

)
=

n(n− 1)

2
≤
(
1− 1

m− 1

)
n2

2
.

In which dividing by n2/2, we obtain

1− 1

n
≤
(
1− 1

m− 1

)
,

which holds, because n ≤ m− 1.
Thus we assume that n ≥ m. We may assume that G has the maximum number

of edges possible without containing a copy of Km. This implies that G contain at
least one copy of Km−1, since otherwise we can add edges to get one while avoiding
a Km. Let us denote the copy of Km−1 in G by A and define B = G− A. Observe
that A has eA =

(
m−1
2

)
edges. Let us denote the number of edges in B by eB and

the number of edges that join A and B by eA,B.
Since G is Km-free, every vertex of B is adjacent to at most m− 2 vertices in A.

Therefore we have eA,B ≤ (m− 2)(n−m+ 1). By induction, we have

eB ≤ 1

2

(
1− 1

m− 1

)
(n−m+ 1)2.

Therefore, we have

|E(G)| ≤ eA + eB + eA,B

≤
(
m− 1

2

)
+

1

2

(
1− 1

m− 1

)
(n−m+ 1)2 + (m− 2)(n−m+ 1)

=

(
1− 1

m− 1

)
.

Concluding the proof.
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Figure 3.1: An illustration of the Turán’s graph t4(13).

Note that for every complete graph Km and Kn, if m > n, then Kn ⊆ Km. Let
KL = {K3, K4, · · · , KL}. Then ex(n,KL) = ex(n,K3) = ⌊n

2
⌋⌈n

2
⌉, for all L ≥ 3,

given by Theorem 3.3. This is the first result for a whole family of graphs, even
though it is a trivial result, and leads us to the following statement.

Proposition 3.6. Let H = {H1, H2, . . . , Hr} be a family of graphs and G be a graph
on n vertices. We have

ex(n,H) ≤ min
H∈H

ex(n,H).

Because if G satisfies E(G) > minH∈H ex(n,H), then there is an index i ∈ [r]

such that Hi ⊆ G, meaning that G is not H-free.
In 1946, P. Erdős and A. Stone [20] found the following asymptotic bound for

the extremal number for non-bipartite graphs H.

Theorem 3.7 (Erdős–Stone, 1946). If H is a non-empty graph with χ(H) > 2, then

ex(n,H) =

(
1− 1

χ(H)− 1
+ o(1)

)
n2

2
.

Unfortunately, for the case of bipartite graphs, since χ(H) = 2, Theorem 3.7
does not provide any useful bound for ex(n,H). Different results exist concerning
the extremal number for bipartite graphs. In 1954, T. Kővári, V. Sós e P. Turán [33]
showed the following bound to the extremal number to complete bipartite graphs,
denoted by Ks,t.

Theorem 3.8 (Kővári–Sós–Turán, 1954). Let s, t ∈ N, with s ≤ t. There exists
C = C(s, t) > 0 such that

ex(n,Ks,t) ≤ Cn2−1/s.
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The proof of this result relies in counting a specific structure called an s-cherry,
which consists of a copy of K1,s and can be found in [33].

For different classes of bipartite graphs, the first result for the extremal number
of C2k was found by J. Bondy and M. Simonovits [10] in 1974.

Theorem 3.9 (Bondy–Simonovits, 1974). There exists a positive integer n0 such
that for integers n ≥ n0, we have

ex(n,C2k) ≤ 20kn1+1/k.

This bound was later improved to ex(n,C2k) ≤ 80n1+1/k
√
k log k + 10k2n, by B.

Bukh and Z. Jiang [14], in 2017.
Despite many decades of intense interest [45], constructions of C2k-free graphs

with Ω(n1+1/k) edges are known only for k = 2, 3, 5. An algebraic construction
that yields n-vertex graphs with no C4, C6, and C10 with a close to the maximum
number of edges was found by R. Wenger [47] in 1991, but only recently, in 2021, a
geometrical interpretation of this construction was given by D. Conlon [17].

Another special case for bipartite graphs is when H = Pℓ is a path, as shown by
P. Erdős and T. Gallai, in 1959, to have the following extremal number.

Theorem 3.10 (Erdős–Gallai, 1959). Let Pℓ denote a path of length (number of
edges) ℓ. Then, for n ≥ ℓ

ex(n, Pℓ) =
(ℓ− 1)n

2
.

In order to prove this theorem, we need the following lemma.

Lemma 3.11. Every connected graph on n vertices contains a copy of Pk, where

k = min{2δ(G), n− 1}.

Proof. Given a connected graph G = (V,E), let P = p1p2 · · · pℓ+1 be the longest
path of G. Note that if there is a vertex v ∈ V (G) such that v /∈ V (P ) and v is
adjacent to either p1 and pℓ+1, then it contradicts the maximality of P .

We claim that if ℓ < k ≤ 2δ(G), then one can find a cycle C in G using the
vertices of V (P ). Indeed, by the Pigeonhole Principle, there is an i ∈ [ℓ] such that
{p1pi, pi−1pℓ+1} ⊆ E(G).

Since G is connected, if there is a vertex v /∈ V (C), then there is an vertex pi

that is adjacent to v, which contradicts the maximality of P .
Therefore, either ℓ = n − 1, which is a path containing all the vertices of G, or

ℓ = 2δ(G), as desired.

With this lemma at hand the proof for Theorem 3.10 goes as follows.
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Proof. The proof proceeds by induction on n. Let G be a Pℓ-free graph on n vertices.
If n ≤ ℓ, then

|E(G)| ≤
(
n

2

)
=

n(n− 1)

2
≤ n(ℓ− 1)

2
.

Therefore, we may assume that n ≥ ℓ+1, and that the theorem holds for graphs
with n′ < n vertices. First, suppose that G is not connected. This implies that
G =

⋃
i Gi where Gi is a connected component of G and Gi, Gj are disjoint graphs.

Since G is Pℓ-free, we have that Gi is Pℓ-free for all i. Therefore, by the induction
hypothesis, we have

|E(G)| =
m∑
i=1

|E(Gi)| ≤
(ℓ− 1)

2

m∑
i=1

|V (Gi)| =
n(ℓ− 1)

2
.

as desired.
Thus we may assume that G is connected. Note that by Lemma 3.11, if δ(G) ≥

ℓ/2, then Pℓ ⊆ G. On the other hand, if δ(G) < ℓ/2, then there is a vertex u ∈ V (G)

for which d(u) ≤ (ℓ−1)
2

. Let G′ = G−{u}, and note that G′ is Pℓ-free. Then, by the
induction hypothesis, we have

|E(G)| ≤ |E(G′)|+ (ℓ− 1)

2
=

(ℓ− 1)(n− 1)

2
+

(ℓ− 1)

2
=

(ℓ− 1)n

2
,

as desired.

Recall that Tk denotes the family of trees on k vertices. Since Pk−1 ⊆ Tk, from
Proposition 3.6 we have for a positive integer n ∈ N

(k − 2)n

2
= ex(n, Pk−1) ≥ min

T∈Tk
ex(n, T ) ≥ ex(n, Tk).

This observation motivated the statement of the following conjecture from 1963,
due to P. Erdős and V. Sós [12], which generalizes Theorem 3.10 for all trees on k

vertices, and is the main subject of Section 3.1.

Conjecture 3.12 (Erdős–Sós). Let n, k ∈ N. For all T ∈ Tk, we have

ex(n, T ) ≤ n(k − 2)

2
.

In other words, Conjecture 3.12 states that if G is a graph on n vertices with
more than n(k− 2)/2 edges, then G contains every tree on k vertices as a subgraph.
This conjecture, if true, gives a bound for the number of unlabeled trees, as the
number of subgraphs of G.

In the early 90s, M. Ajtai, J. Komlós, M. Simonovits and E. Szemerédi announced
a proof for Conjecture 3.12, but, unfortunately, it was never published. For this
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reason, the scientific community kept working in many particular cases. A weaker
version of this statement can be proved with the help of the following lemmas.

Lemma 3.13. Every non-empty graph G contains a subgraph H with

δ(H) >
|E(G)|
|V (G)|

.

Proof. Consider the following graph sequence

G = G0 ⊃ G1 ⊃ · · · ⊃ Gm = H,

in which for each i ∈ [n] the graph Gi is obtained from Gi−1 by removing a vertex
with degree at most |E(G)|/|V (G)| in Gi−1. Suppose that m ≥ |V (G)|. Let vi be
the vertex removed from the graph Gi−1 to obtain Gi. Since d(vi) ≤ |E(G)|/|V (G)|
in Gi−1 and since all edges of G would be removed in some step, we have that

|E(G)| =
m∑
i=1

dGi−1
(vi) ≤ (|V (G)| − 1)

|E(G)|
|V (G)|

< |E(G)|,

which is a contradiction.
Therefore, m < |V (G)|, and this process stops before removing every vertex

v ∈ V (G), which results in a subgraph H as desired.

The next lemma gives us necessary conditions to find the desired tree in H.

Lemma 3.14. For k ∈ N, if G is a graph for which δ(G) ≥ k − 1, then T ⊆ G, for
all T ∈ Tk.

Proof. The proof is by induction on k. If k = 2, then T is a pair of adjacent vertices,
and, therefore, it is contained in every graph with at least one edge. Let T be a tree
with k ≥ 3 vertices, let be G a graph for which δ(G) ≥ k − 1, and suppose that the
statement holds for k′ < k.

First, since T is a tree with at least three vertices, it contains at least one
leaf v. Let T ′ = T − {v}. Since T ′ is a tree, by the induction hypothesis, we
have that T ′ ⊆ G. Let u be the unique vertex in T for which uv ∈ E(T ). Since
dG(u) ≥ δ(G) ≥ k − 1, there exists a vertex x ∈ G such that x is not in the copy
of T ′ in G. For this reason, we can extend this copy by setting the image of v as x,
obtaining a copy of T in G, as desired.

With these lemmas, we can prove the following statement, which is a weaker
version of the Erdős–Sós conjecture.

Theorem 3.15. Let n, k ∈ N, and let T be a tree on k vertices, then

ex(n, T ) ≤ (k − 2)n.
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Proof. Suppose that there is a graph G with |E| > (k − 2)n that is T -free. By
Lemma 3.13 there exists a subgraph H ⊆ G with

δ(H) >
|E(G)|
|V (G)|

= k − 2,

and, therefore, δ(H) ≥ k − 1.
By Lemma 3.14, we have that T ⊆ H ⊆ G, as desired.

3.1 Erdős–Sós Conjecture

In this section, we display a plethora of partial results concerning Conjecture 3.12
to identify possible directions one may follow to contribute to the state of the art
with respect to this problem. We divided the results in four different directions,
each representing a weakening of Conjecture 3.12 that consider a different kind of
hypothesis. For some of these theorems, we show a sketch of its proof and some
considerations, as an attempt to bring clarity to the proofs.

It is worth restating Conjecture 3.12 in terms of the average degree d of the
graph G, which is defined as d(G) = 1

|V (G)|
∑

v∈V (G) d(v).

Conjecture 3.16 (Erdős–Sós). Let G be a graph on n vertices and T be a tree on
k vertices. If d(G) > k − 2, then T ⊆ G.

Suppose that |V (G)| = n, note that the hypothesis d(G) > k − 2 implies the
following inequality.

|E(G)| = nd(G)

2
>

n(k − 2)

2
. (3.1)

Which implies that |E(G)| ≥ ⌊n(k−2)
2

⌋+1 Thus, if n is even, then |E(G)| ≥ n(k−2)
2

+1;
and, if n is odd, we have |E(G)| ≥ n(k−2)

2
+ 1

2
.

3.1.1 Large Trees

In this section, we present some results found in the literature concerning Conjec-
ture 3.16 in the case that the graph G has n = k+ c vertices, where k is the number
of vertices of the tree T , and c is a nonnegative constant.

The first theorem in this direction was proved by B. Zhou in 1984 [51] and
considers the case c = 0, in which n = k.

Theorem 3.17 (Zhou, 1984). For n, k ∈ N, let G be a graph on n vertices and T

be a tree on k vertices. If d(G) > k − 2 and n = k, then T ⊆ G.

The main technique of the proof is to first find an isomorphism φ′ of a tree
T ′ = T − {v}, where v is a leaf of T , into G′ = G− u, and u is a universal vertex
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of G, which is illustrated in Figure 3.2. It is worth mentioning that this idea is the
same as the idea of the proof of Lemma 3.14.

φ′(T ′)

G

u

Figure 3.2: An illustration of the isomorphism φ′ of T ′ into G−{u} for the universal
vertex u ∈ V (G).

Thus, one may extend the isomorphism φ′ into φ by setting φ(v) = u and
φ(x) = φ′(x), for x ̸= v. Note that since u is universal, every vertex in V (φ′(T ′)) is
adjacent to u in G, which implies that φ is an isomorphism of T into G.

A simplified version of the proof Theorem 3.17 goes as follows.

Proof. For n = 3, the theorem clearly holds since if G has d(G) > 1 it has a vertex v

with d(v) = 2, and, therefore, contains all trees on three vertices. The proof follows
by induction on n, so suppose that the assertion holds for all m ≤ n− 1.

Observe that since d(G) is greater than k− 2, there must be at least one vertex
u ∈ V (G) such that d(u) = k − 1. First, suppose that n is even, by Equation 3.1,
we may suppose that G satisfies 2|E(G)| ≥ n(n− 2) + 2.

Given a tree T on k vertices. If T is a path, then the statement holds due to
Theorem 3.10. Therefore, one may suppose that T is not a path. Consider the tree
T ′ = T − {v}, for a leaf v of T , consider the graph G′ obtained by deleting u of G,
that is G′ = G− {u}. Then

2|E(G′)| ≥ n(n− 2) + 2− 2d(u) = n2 − 4n+ 4 > (n− 1)(n− 3).

Which implies that d(G′) > n − 3. Therefore, by the induction hypothesis, we
have T ′ ⊆ G′. Note that we can extend the isomorphism φ′ of T ′ into G′ by setting
the image of φ(v) = u, since d(u) = n−1 and, thus is adjacent to every other vertex
of G. This implies that T ⊆ G, as desired.

Now, if n is odd, and T is a star, the fact that u ∈ V (G), with d(u) = n − 1,
implies that T ⊆ G. Therefore, one may suppose that T is not a star. Recall that
∂T is the tree obtained from T by deleting all leaves of T . Let L denote the set of
all leaves in T , and L′ denote the set of all leaves in ∂T . Let a branch of T be a
set consisting of one vertex v of L′ and the leaves of L that are adjacent to v. Since
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|L| ≥ 2, there must be one branch B of T such that 2 ≤ |V (B)| = p ≤ ⌊n/2⌋. Let
A = {v1, v2, . . . , vp−1}.

∑
v∈A

d(v) ≤ (p− 1)(n− 2).

If for every vi ∈ A and vj ∈ G − A, vi and vj are adjacent in G, delete all the
leaves of T that belong to B and denote the remaining tree of order n − p + 1 by
T2. There are (p− 1)(n− p+ 1) edges between A and G− A. Therefore, we have

2|E(G− A)| ≥ n(n− 2) + 1− 2(p− 1)(n− p+ 1)

− [(p− 1)(n− 2)− (p− 1)(n− p+ 1)]

= (n− p)2

= (n− p− 1)(n− p+ 1) + 1.

Again, by the inductive hypothesis, we have that T2 ⊆ G−A and, we can extend T2

to T , proving that T ⊆ G. The final case is if there is a pair vi ∈ A, and vj ∈ G−A

such that vi and vj are not adjacent. In this case, we proceed to delete all of the
vertices of T that belong to B and denote the remaining tree of order n − p as T3.
There are at most (p− 1)(n− p+ 1)− 1 edges between A and G−A. Consider the
set G′ = G− A− {u}. Thus, we have

2|E(G− A− {u})| ≥ (n− 1)2 − 2[(p− 1)(n− p+ 1)− 1]

− [(p− 1)(n− 2)− (p− 1)(n− p+ 1) + 1]− 2n+ 2p

= (n− p)(n− p− 2) + 1

Once more, by the inductive hypothesis we have that T3 ⊆ G−A− {u}, which can
be extended to T ⊆ G, concluding the proof.

The second theorem on this direction was shown by P. Slater, S. Teo and H. Yap
in 1985 [40], in the context of graph packing. Given graphs G and H, if H ⊆ Gc,
which is the complement of G, then we say that G and H are packable. We can
rewrite the Erdős–Sós Conjecture as a graph packing problem as follows.

Conjecture 3.18. For positive integers n and k, let G be a graph on n vertices and
T any tree on k vertices, if |E(G)| < 1

2
n(n− k + 1), then T and G are packable.

P. Slater, S. Teo and H. Yap proved the following general theorem on graph
packing.

Theorem 3.19 (Slater–Teo–Yap, 1985). For n, k ∈ N, let G a graph on n vertices
and n− 1 edges, and T be a tree on k ≥ 5 vertices. If n = k+ 1, and neither T nor
G is a star, then T and G are packable.
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Note that if k = n or k = n− 1 in Conjecture 3.18, then |E(G)| ≤ n− 1, which,
by Theorem 3.19, implies that G and T pack, assuming that they are not stars.
This means that Theorem 3.19 also gives a proof of Conjecture 3.16 in the case that
n = k. Unfortunately, its proof technique fails for the cases k = n − c, for c ≥ 2.
This means that Conjecture 3.16 holds for graphs G with |V (G)| = k + 1 when G

nor T are stars. If T is a star, then T is contained in G, because the hypothesis
of d(G) > k − 2 implies the existence of a vertex with degree at least k − 1, which
would be set as the pre-image of the center of the star T .

The case where G is a tree on n vertices was proven in 1981, by P. Slater et al.
in [40]. For this reason, one may start the proof supposing that G is not a tree. We
present a sketch of the proof of Theorem 3.19
Sketch of the proof: Suppose that G is a graph on n vertex that is not a tree. The
proof follows by induction on n. The case where n ∈ {5, 6} can be done by verifying
that Gc for G with n vertices and n − 1 edges contains every tree T that is not a
star. The main idea is similar to the proof of Theorem 3.17 but instead of finding
an isomorphism of T ′ in G′, one must find an isomorphism of T ′ in (Gc)′, for special
trees T ′ and graphs G′ that are considered in different cases.

In the first case, consider the case where T is an extended star S ′
n, which is a

tree that is obtained from a star Sn−1 by subdividing one of its edges once, i.e.,
by replacing an edge by a path with two edges. We denote the center of the star
by c and the leaf of the subdivided edge by y. Since G is not a tree, either G has
an isolated vertex, say vp, or G has at least two vertices of degree 1. Assuming G

has an isolated vertex vp, since n ≥ 7, G′ = G − {vp} has two vertices that are
not adjacent, say v1 and v2. Thus, one may find an isomorphism φ of T into Gc,
since dGc(vp) = n − 1, by setting φ(c) = vp, φ(x) = v1, and φ(y) = v2. Otherwise,
if G has at least two vertices of degree 1, then let u be one such vertex and v its
unique neighbor. Thus, one find an isomorphism φ of T into Gc by setting φ(c) = u,
φ(x) = t and φ(y) = v. Henceforth, assume that T ̸= S ′

n, which means that T has
two leaves t1 and t2 such that d(t1, t2) ≥ 3 and T − {t1, t2} is not a star.

In a similar way, proceed to the case that G has an isolated vertex or if G

has two leaves u and v such that dist(u, v) ≥ 3, by finding an isomorphism φ′ of
T ′ = T − {t1, t2} into (Gc)′ ⊆ Gc and then extending to an isomorphism φ of T
into Gc by defining φ(x) ∈ (Gc)′, for x ∈ T ′ and by finding low degree vertices in G

which are good candidates for φ(t1) and φ(t2).
If G does not have this structure, since G is not a tree, it must have at least

two components, and at least one of which is acyclic, because |E(G)| = k− 1. This
means that G contains exactly one acyclic component and every other component
is a cycle. Furthermore, this acyclic component must be a star Sn, where n ≥ 2.
The next case to prove is the case where one of the components of G is a cycle Cm
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with m ≥ 4 and follows the same argument from the previous case.
All that remains is the case that G = rC3 ∪ Sj for j ≥ 2, i.e., G consists

of r disjoint copies of C3 and a star St First consider r ≥ 2, which for n ≥ 8

means that T has at least three vertices, say t1, t2, and t3, with degree 1 such that
T ′ = T−{t1, t2, t3} is not a star Sn−3. By induction, there is an isomorphism φ′ of T ′

into (Gc)′ = (Gc)−v1, v2, v3, where v1, v2, v3 are three vertices of G that form a cycle,
and then proceed to extend φ′ to an isomorphism φ of T into Gc. All that remains
is the case that G = C3 ∪ Sk for k ≥ 4, which is the final case. One can find three
independent vertices t1, t2, t3 in T for which t1 is adjacent to a vertex with degree 1,
then finding an isomorphism φ′ of T ′ = T −{t1, t2, t3} into (Gc)′ = Gc−{v1, v2, v3},
where v1, v2, and v3 are the vertices that form a cycle in G, and then extending φ′

to an isomorphism φ of T into Gc, concluding the demonstration. □□□

The third theorem on this direction was shown by M. Woźniak in 1996 [49],
which still uses the packing reformulation of the Erdős–Sós conjecture.

Theorem 3.20 (Woźniak, 1996). For n, k ∈ N, let G be a graph on n vertices and
T be a tree on k vertices. If 2|E(G)| < 3n then T and G are packable.

Notice that this represents the case that k = n − 2 on Conjecture 3.18. This
proof follows the main idea as the proof of Theorem 3.19. First the author finds an
isomorphism φ′ of a tree T ′ ⊆ T into G′ ⊆ G and then extends such isomorphism.
The main difference is the number of cases that are considered, since it becomes
harder to find an isomorphism of T into Gc when T is a tree on fewer vertices. A
sketch of the proof goes as follows.
Sketch of the proof: The proof is by induction on n. The author divides the proof
in three main cases in terms of the minimum degree of G. The author considers
a vertex y ∈ V (G) such that d(y) = ∆(G) and also considers the longest path P

of T , denoting by a1a2 · · · ar. The first case is if G has an isolated vertex x. By
induction, there is an isomorphism φ′ of T ′ = T − {a2, v} into (Gc)′ = Gc − {x, y},
where v ∈ V (T ) is a leaf. Then one may extend φ′ to an isomorphism φ of T into
Gc by setting φ(a2) = x and φ(v) = y.

The second case is when G has a leaf v, which is further divided depending
whether n is even or odd. If n is even, the isomorphism can be constructed anal-
ogously to the first case. But in the case that n is odd, it considers u, which the
vertex that is adjacent to v, and the case is divided into the “subsubcases” d(u) ≥ 3,
or d(u) = 1 or d(u) = 2. In the first two, the isomorphism is constructed in a
direct and similar manner to the first case, but in the case that d(y) = 2, one must
proceed more carefully, leading to more cases, which considers the vertex z which
is the vertex of G adjacent to u. If d(z) ≥ 4, d(z) = 1, d(z) = 2, the packing is
constructed similarly to the first case. But in the case that d(z) = 3, the case is
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further explored, by further dividing the problem into smaller cases. In the end, one
divide the case into two cases that have a packing that can be constructed similarly
to the first case.

The third and final case is when d(v) ≥ 2, for all v ∈ V (G), repeating the same
strategy in the last case by dividing the problem in smaller subcases in which a
packing can be constructed and extended easily, by considering different trees T ′

and host graphs G′. □□□

We continue with the next result on this direction which is due to G. Tiner in
2010 [43].

Theorem 3.21 (Tiner, 2010). For n, k ∈ N, let G be a graph on n vertices and T

be a tree on k vertices. If d(G) > k − 2, and n = k + 3, then T ⊆ G.

Unfortunately, we are not able to access this publication as of today, but we
believe that the methods employed follow a similar strategy of the other results.
The fifth theorem on this direction, shown by L. Yuan and X. Zhang in 2015 [50] is
the following.

Theorem 3.22 (Yuan–Zhang, 2015). For n, k ∈ N, let G be a graph on n vertices
and T be a tree on k vertices. If d(G) > k − 2, and n = k + 4, then T ⊆ G.

Theorem 3.22 is the last result for trees on k = n− c vertices that uses the same
proof strategy as Theorem 3.17. The main reason for this is the increase on the
complexity of the proof compared to the other cases, showing the limitations of this
strategy. Instead of a couple special cases to be considered for the isomorphism φ′

of a tree T ′ = T −X into a graph G′ = G− Y , for set of special vertices X ⊆ V (T )

and Y ⊆ V (G), consider forty six different subcases which require different sets X

and Y . The authors return to the average degree formulation of Conjecture 3.16,
instead of the graph packing formulation. Here, we present a sketch of the proof of
Theorem 3.22.
Sketch of the proof: The proof is by induction on n. For n ≤ 5, it is easily verifiable
that the conjecture holds. Therefore, assume that the statement holds for all of the
graphs with less than n vertices. Let T be a tree on k = n−4 vertices with a longest
path P = a0a1a2 · · · ar, and let NT (a1) \ {a2} = {b0, b1, . . . , bs}.

Since d(G) > k − 2, the only cases that need to be considered are the cases
∆(G) = k + 3, k + 2, k + 1, k, and k − 1. These are the five main cases of the proof
and are analogous to the cases of δ(G) = 0, 1, 2, 3, 4 when considering the graph
packing formulation, which would mean that ∆(Gc) = n− 1, n− 2, n− 3, n− 4 and
n− 5.

In the case ∆(G) = k + 3, let u ∈ V (G) be a vertex such that d(u) = k + 3. We
consider the graph graph G′ = G− {u} and the tree T ′ = T − {a1, b1, . . . , bs}. This
implies that
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d(G′) >
k2 − 2k − 2

k + 2
> k − 4.

By the induction hypothesis, there is an isomorphism φ′ of T ′ into G′. Then, one
may extend this embedding by setting φ(a1) = u and φ(x) = φ′(x) for all x ∈ V (T )

such that x /∈ a1, b1, . . . , bs. Since u is universal, u is adjacent to at least s vertices
in V (G) \ φ′(V (T ′)), which means that φ is an isomorphism of T into G.

The proof follows considering the cases for which ∆(G) = k + 2, k + 1, k, and
k − 1, in a similar, yet more complicated, way as in first case. □□□

The main takeaway of this proof is that every time that it seems hard to find
an isomorphism of T ′ into G′, one tries to divide the case into an easy case and a
case slightly less complicated than the general case. This strategy finally converges
to a case that when divided, the construction of the isomorphism of T into G is
analogous to one of the other, already solved, cases.

Lastly, a more general result was proven in this direction by A. Görlich and A.
Żak in 2016 [26].

Theorem 3.23 (Görlich–Żak, 2016). Let c be a positive integer and let
k0(c) = γc12log4(c), where γ is a sufficiently large constant. Then, for every
t ∈ [c] and for every integer k ≥ k0(c) the following holds. Let G be a graph on n

vertices, and T be a tree on k vertices. If d(G) > k− 2 and n = k + t, then T ⊆ G.

The proof strategy employed by A. Görlich and A. Żak differ entirely from the
previous proofs. This time, the proof relies in a probabilistic argument by refining
the approach presented by N. Alon and R. Yuster in [5] for another problem. For
important definitions and results in Probability Theory, we refer the reader to S.
Ross in [37] and M. DeGroot and M. Schervish in [18].

Let X be a random variable that follows a binomial distribution with n ∈ N
trials and success probability p ∈ [0, 1], denoted by X ∼ Bin(n, p). We denote by
E[X] the expected value of X. A well known result from probability theory states
that if X ∼ Bin(n, p), then E[X] = np. The author uses the following version of
the Chernoff bounds for the probabilities of two events associated with the random
variable X.

If µ ≥ E[X] = np, then

Pr [X ≥ 2µ] ≤ e−µ/3. (3.2)

On the other hand, if µ ≤ E[X] = np, then

Pr [X ≤ µ/2] ≤ e−µ/8. (3.3)
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Given a graph G = (V,E), for a subset of vertices W ⊆ V , we define the
neighborhood of W , denoted by NG(W ), as NG(W ) =

⋃
w∈W N(w) \W .

The authors also provide the following lemma, which is an adaptation of a result
from [5] and the main tool in their proof.

Lemma 3.24. Let G be a graph with n vertices and at most m edges. Let V (G) =

{v1, . . . , vn} with d(v1) ≥ d(v2) ≥ · · · ≥ d(vn). Let Ai, for i ∈ [n], be any subset of
V (G) with the additional requirement that if u ∈ Ai, then d(u) < a, for a positive
integer a. Consider, for i ∈ [n], the random subset Bi of Ai, where each vertex of
Ai is independently selected to Bi with probability p < 1/a. Consider the sets

Ci =

(
i−1⋃
j=1

Bj

)
∩N(vi),

Di = Bi \

(
i−1⋃
j=1

(NG(Bj) ∪Bj)

)
.

Then we have

Pr [|Ci| ≥ 4mp] ≤ e−2mp/3, for i ∈ [n], (3.4)

Pr

[
|Di| ≤

2|Ai|
2e

]
≤ e−p|Ai|/8e, for i ∈ [⌊(ap)−1⌋]. (3.5)

The main technique of the proof of Theorem 3.23 is to choose Ai and p carefully
so that the bounds given by equations 3.4 and 3.5 are both greater than 1/2, which
implies in both events occurring simultaneously with a positive probability.

We now give a proof sketch for Theorem 3.23.
Sketch of the proof: The proof is by induction on t. By Theorem 3.17, the result
holds for t = 0. Thus, fix a t ∈ [c] and assume that the statement holds for t− 1.

Consider the set Si ⊆ V (G) \ N(vi), for i ∈ [n], with the assumption that if
u ∈ Si, then d(u) < 5c and that ∆(T ) < 60cn3/4. By construction, we have that
|Si| ≥ n

4
+ t. Moreover, for i ∈ [n], pick a random subset Bi of Si where each vertex

of Si is independently selected to Bi with probability

p =
n−3/4

1.5 · 102c
.

This implies, by Lemma 3.24, that the events where |Ci| ≤ n1/4
750c2

, for i ∈ [n],
and |Di| ≥ 3, for i ∈

[
⌊(300c2n3/4)⌋

]
are bounded by Equations (3.4) and (3.5),

respectively. Moreover, by the union bound, one can prove that both events happen
with a positive probability. The next step of the proof is to construct an isomorphism
of T into G in three steps. At each point of the construction, some vertices of T are
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matched to some vertices of G, while the other vertices remain unmatched. Initially,
all vertices are unmatched. The main idea of step 1 is to match certain vertices of
G that have the largest degrees since they are the easier to match. The main idea
of step 2 is to find an independent set J on the set of the vertices that are not
matched in T and expand the matching to with the vertices in T \ J to the vertices
in G. Lastly, in step 3, one may proceed to extend the matching to the vertices in
J , finding an isomorphism of T into G.

The rest of the proof is a variation of the same argument for the case that
∆(T ) ≥ 60cn3/4, but starting with a different set of vertices. The idea is still to
match T with a subset of G, but since T has vertices with high degrees, this becomes
slightly harder and needs more preparation. Therefore, there are two preparatory
steps, in which one start matching the maximum degree vertices of T and G then
proceed to their neighbors. Then, in the second preparatory step, try to match as
much as possible of the vertices in G with the lowest degrees and the vertices in T .
Then, complete the matching with a step analogous to the previous case in steps
1, 2, and 3. □□□

This was the last result found in the direction of weakening the Conjecture 3.16
by considering only large trees and brings some new light to this case of the problem,
motivating the search for better constants or analogous results for other cases of
Conjecture 3.16.

3.1.2 Special Trees

In this section, we present some of the theorems that were proved by introducing an
hypothesis to Conjecture 3.16 that specifies either some properties of T , or a special
tree class in which all trees in a class share a special property.

According to W. Moser and J. Pach in [35], M. Perles showed that Conjecture 3.16
holds for all trees T that are caterpillars but, unfortunately, we are unable to find
his proof.

In 1989, A. Sidorenko in [39] proved the following version of Conjecture 3.16.

Theorem 3.25 (Sidorenko, 1989). For n, k ∈ N, let G be a graph on n vertices and
T be a tree on k vertices. If d(G) > k− 2, and T has a vertex that is adjacent to at
least k/2− 1 leaves, then T ⊆ G.

The proof of Theorem 3.25 follows the same idea as the proof of Theorem 3.17.
In which one finds an isomorphism of a tree T ′ = T −X into G′ = G− Y , and then
the idea is to extend it to T by setting the image of the remaining vertices of T in
the remaining vertices of G.

Following this direction, the next result obtained was proved by M. Woźniak in
1996 [49].
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Theorem 3.26 (Woźniak, 1996). For n, k ∈ N, let G be a graph on n vertices and
T be a tree on k vertices. If d(G) > k − 2, and T is a spider in which in each leg
has at most two edges, then T ⊆ G.

It is worth mentioning that the author proved this theorem in the context of
graph packing, seen in Subsection 3.1.1, by constructing a packing of T and Gc.
Its is very similar to the proof of Theorem 3.25 and, hence, we omit from this
dissertation.

Later, in 2004, A. McLennan [34] proved the following result. Recall that, for
a given tree T , the diameter of T is denoted by D(T ), and is the greatest distance
between any pair of vertices u, v ∈ V (T ).

Theorem 3.27 (McLennan, 2004). For n, k ∈ N, let G be a graph on n vertices
and T be a tree on k vertices. If d(G) > k − 2, and D(T ) ≤ 4 then T ⊆ G.

The proof of Theorem 3.27 relies in proving the following lemma:

Lemma 3.28. Let G be a graph on n vertices and T be a tree on k vertices. If
d(G) > k − 2, and D(T ) ≤ 4, then there exist u ∈ V (G) and distinct v1, . . . , vp ∈
N(u) such that:

|N(vi) \ {u, v1, . . . , vp}| ≥ k − 2p+ i− 1, for i = 1, . . . , p.

Note that the hypothesis d(G) > k − 2, implies the existence of a vertex with
k − 1 neighbors, but Lemma 3.28 requires a vertex whose neighbors have many
neighbors. To prove such lemma, A. McLennan prove the following proposition.

Proposition 3.29. Suppose that 1 ≤ q ≤ p, u ∈ V (G) and A ⊂ N(u) is a set such
that d(v) ≥ k − p for all v ∈ A and

∑
v∈A

(
1− k − p− 1

d(v)

)
> p− q.

Then there are distinct vq, . . . , vp ∈ A such that

|N(vi) \ {u, vq, dots, vp}| ≥ k − 2p+ 1− 1, for i ∈ {q, . . . , p}.

Note that the case where q = 1 in Proposition 3.29 is equivalent to Lemma 3.28.
We now present a proof sketch for Theorem 3.27.
Sketch of the proof: Fix a tree T of diameter at most 4. If the diameter of T is
either 2 or 3 then Theorem 3.25 implies that there is an isomorphism of T into G.
Therefore, you may assume that T has diameter exactly 4. Let a0 and a4 be the
vertices in T whose distance is 4. Let a1, a2, a3 be the vertices on the path between
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a0 and a4. Then, the distance between a2 and any other vertex is not greater than
2. The tree T can now be characterized by the number of neighbors of a2, which is
denoted by p. Also, denote by αi the number of neighbors of vi, other than a2, for
which vi is adjacent to a2, for i ∈ [p]. Then α1 + · · ·+ αp = k − p− 1.

For i = 1, . . . , p, let βi := α1+ · · ·+αi. If there is a vertex u ∈ V (G) and distinct
vertices v1, . . . , vp ∈ N(u) such that

|N(v1) \ {u, v1, . . . , vp}| ≥ B1, . . . , |N(vp) \ {u, v1, . . . , vp}| ≥ βp,

then we can find an isomorphism of T into G by choosing S1 ⊆ N(v1)\{u, v1, . . . , vp},
with α1 elements, S2 ⊆ N(v2)\ ({u, v1, . . . , vp}∪S1), with α2 elements and so on. It
turns out that one is able to find a satisfactory tuple of vertices (u, v1, . . . , vp) when
β1, . . . , βp satisfy the following condition:

βi ≤ max{0, (k − 2p+ i− 1)}.

An application of Lemma 3.28 concludes the proof. □□□

In the same work, McLennan gives an alternative proof of Theorem 3.25, and
shows that this argument alone does not work for trees with diameter at most 5.

The next result was proved, in 2007, by G. Fan and L. Sun in [23], and strengthens
Woźniak’s results on Spiders with diameter at most 4.

Theorem 3.30 (Fan–Sun, 2007). For n, k ∈ N, let G be a graph on n vertices and
T be a tree on k vertices. If d(G) > k − 2, and T is either a spider with three legs
or a spider whose legs have length at most 4, then T ⊆ G.

The proof of the case that T is a spider with 3 legs relies in the following obser-
vation.

Observation 3.31. Let G be a graph on n vertices, and let T be a spider with
k vertices and three legs of lengths ℓ1, ℓ2, ℓ3. Without loss of generality, assume
that 1 ≤ ℓ1 ≤ ℓ2 ≤ ℓ3. If there is a path P = x0x1 · · ·xp with p ≥ l1 such that
G− {x1, x2, . . . , xp} has a cycle D containing x0 with |E(D)| ≥ ℓ2 + ℓ3 + 1, then G

has a copy of T having x0 as its center.

In 2016, G. Fan and Z. Huo used the same strategy to prove an extension of
Theorem 3.30 in [22].

Theorem 3.32 (Fan–Huo, 2016). For n, k ∈ N, let G be a graph on n vertices and
T be a tree on k vertices. If d(G) > k − 2, and T is a spider of four legs, then
T ⊆ G.

49



The proof strategy is the same as in the Theorem 3.30 but needs to consider
different subcases analogously to the extensions of the proofs in Section 3.1.1. Fi-
nally, in 2019, G. Fan, Y. Hong, and Q. Liu showed that Conjecture 3.16 holds for
all spiders in [24].

Theorem 3.33 (Fan–Hong–Liu, 2019). For n, k ∈ N, let G be a graph on n vertices
and T be a tree on k vertices. If d(G) > k − 2, and T is a spider, then T ⊆ G.

The strategy of the proof is to start with an isomorphism φ′ of a spider T ′ ⊆ T

into G′ ⊆ G and extend it to an isomorphism φ of the desired spider T into G. The
authors proved five different extension lemmas that shows how one could construct
an extension φ to the isomorphism φ′. Similarly to the proof of Theorem 3.22, the
proof is divided in several different subcases and is very extensive. While Theo-
rem 3.33 shows that Conjecture 3.16 holds for a large family of trees, there still a
large number of trees remaining.

3.1.3 Special Graphs

In this section, we present some theorems that were proven by including an hypoth-
esis to the Erdős–Sós conjecture that requires an extra property on the graph G,
besides d(G) > k − 2.

The first theorem on this direction was proven by S. Brandt and E. Dobson in
1996 in [13], combining the average degree hypothesis with a condition on the girth
of the graph. Recall that the girth of a graph G is the length of the shortest cycle
contained in G, and is denoted by girth(G).

Theorem 3.34 (Brandt–Dobson, 1996). For n, k ∈ N, let G be a graph on n vertices
and T be a tree on k vertices. If d(G) > k − 2, and girth(G) ≥ 5, then T ⊆ G.

The authors achieve this result as a consequence of the following lemma, that
gives sufficient degree conditions for G to contain a graph T when G has girth at
least 5 and is a variation of Lemma 3.14.

Lemma 3.35. Let G be a graph on n vertices with girth at least 5 and T be a tree
with k vertices. If δ(G) ≥ k/2 and ∆(G) ≥ ∆(T ), then T ⊆ G.

Given a proof of Lemma 3.35, the proof of Theorem 3.34 goes as follows.

Proof. Take a subgraph H ⊆ G, such that H has the minimum number of
vertices which satisfies |E(H)| > |H| (k−2)

2
. Clearly, ∆(H) ≥ k and, since

|E(H − v)| ≤ (|H| − 1) (k−2)
2

for every vertex v, we have that δ(H) ≥ k/2. So
H satisfies the requirements of Lemma 3.35, and, therefore, G contains every tree
T on k vertices.
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Later, in 1997, J. Saclé and M. Woźniak [38] proved a version of Conjecture 3.16,
for graphs G without C4, which is a direct extension of Theorem 3.34. by including
graphs that contains C3.

Theorem 3.36 (Saclé–Woźniak, 1997). For n, k ∈ N, let G be a graph on n vertices
and T be a tree on k vertices. If d(G) > k−2, and G is a C4-free graph, then T ⊆ G.

The proof of Theorem 3.36 follows the same strategy as the proofs for The-
orems 3.17. The authors divide the problem in several cases and, for each case,
constructs an isomorphism φ′ of T ′ ⊆ T into G′ ⊆ G and then extends it to the
whole tree T into G.

In 2000, M. Wang, G. Li, and A. Liu [46] showed the following theorem, which
unfortunately, we were not able to access its proof.

Theorem 3.37 (Wang–Li–Liu, 2000). For n, k ∈ N, let G be a graph on n vertices
and T be a tree on k vertices. If d(G) > k−2, and Gc has girth greater than 4, then
T ⊆ G.

In 2009, N. Eaton and G. Tiner proved the following case for the Conjecture 3.16,
extending it to trees with large minimum degrees.

Theorem 3.38 (Eaton–Tiner, 2009). For n, k ∈ N, let G be a graph on n vertices
and T be a tree on k vertices. If d(G) > k−2, k ≥ 8, and δ(G) ≥ k−4 then T ⊆ G.

Alongside Theorem 3.38, N. Eaton and G. Tiner improved Theorem 3.25 by
proving the following theorem.

Theorem 3.39 (Eaton–Tiner, 2009). For n, k ∈ N, let G be a graph on n vertices
and T be a tree on k vertices. If d(G) > k − 2, and T has a vertex that is adjacent
to at least ⌈k

2
− 2⌉ leaves, then T ⊆ G.

Alongside this result, they proved the following generalization:

Theorem 3.40 (Eaton–Tiner, 2009). For n, k, d ∈ N, let G be a graph on n vertices
and T be a tree on k vertices. If d(G) > k− 2, δ(G) ≥ d and T has a vertex that is
adjacent to at least (k − 1)− d leaves, then T ⊆ G.

The main idea of the proof is similar as in the other constructive proofs but
instead of considering each case in a separate manner, N. Eaton and G. Tiner provide
some important generalizations for when an isomorphism φ of T ′ ⊆ T into G′ ⊆ G

can be extended to an isomorphism φ of T into G.
Lastly, N. Eaton and G. Tiner, in 2013, proved one last result in this direction.

Theorem 3.41 (Eaton–Tiner, 2013). For n, k ∈ N, let G be a graph on n vertices
and T be a tree on k vertices. If d(G) > k − 2, and G is Pk+5 free, then T ⊆ G.
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3.1.4 Approximated Results

In this section, we present some of the most recent theorems. These theorems are
based on an approximation of the conjecture by including hypotheses that depends
on other parameters.

In 2020, G. Besomi, M. Pavez-Signé and M. Stein proved the following special
case of Conjecture 3.16 in [9].

Theorem 3.42 (Besomi–Pavez-Signé–Stein, 2020). For all δ > 0 amd ∆ ∈ N, there
is n0 ∈ N such that for each k, n ∈ N with n ≥ n0 and δn ≤ k ≤ n, and for each
graph G on n vertices and tree T on k vertices the following holds. If d(G) > k − 2

and ∆(T ) ≤ ∆, then T ⊆ G.

To prove this theorem, G. Besomi, M. Pavez-Signé and M. Stein also prove the
following auxiliary lemma that helps to find an isomorphism for trees T in graphs
G with a specific structure.

Lemma 3.43. For each k,∆ ∈ N and each graph G on n vertices with d(G) < k−2

and δ(G) ≥ k
2

the following holds.

(a) If k ≥ 106, and n ≤ (1 + 10−11)k, then G contains each tree T with k vertices

and ∆(T ) ≤
√

(k)

1000
;

(b) If k ≥ 8∆2, G is bipartite, and there is a partition V (G) = A ∪ B such that
|E(A)|+ |E(B)| ≤ β|E(G)| for β = 1

50∆2 , with |A|, |B| ≤
(
1 + 1

25∆2

)
k, then G

contains each tree T with k vertices and ∆(T ) ≤ ∆.

Here we give a short sketch of the proof of Theorem 3.42.
Sketch of the proof: The proof of this theorem is divided into two main cases. The
first case considered is when G is connected and n is considerably larger than k. In
this case, one may employ the Szemerédi’s Regularity Lemma [41] to find an almost
spanning subgraph H ⊆ G that admits a regular partition. If this component is
large enough, then one may show that either H is bipartite or it contains a useful
matching structure that can be used to find the isomorphism of T into H, and,
therefore, of T into G. Otherwise, H is a union of graphs that are almost complete
and of size close to k or almost complete bipartite graphs of size close to 2k. In
this case, one can use an extra edge of G to connect two components and find an
embedding of T into G.

If, on the other hand, n is very close to k, if G is close to being bipartite of
order 2k, or if G is the disjoint union of such graphs then the result follows from
Lemma 3.43. □□□
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It is worth mentioning that the same authors obtained several other results on
degree conditions for embedding trees [8], which is a very closely related problem to
Conjecture 3.16.

Lastly, V. Rozhon, in 2020, independently proved the following result.

Theorem 3.44 (Rozhon, 2020). For any η > 0, there is n0 ∈ N and γ > 0 such
that for every n > n0 and k > 0, any graph G on n vertices with d(G) ≥ k + ηn

contains every tree T on k vertices with ∆(T ) ≥ γk.

The proof of Theorem 3.44 also uses the Szemerédi’s regularity lemma [41] to
find a suitable subraph H ⊆ G that serves as a host for the copy of T in G.

3.2 Related Problems

In this section, we exhibit some problems from Extremal Graph Theory that are
closely related to the Conjecture 3.16. The first problem is a simple variation,
formulated by M. Loebl, J. Komlós and V. Sós [19] in which one replaces the average
degree d(G) with the median degree of G, denoted by d∗(G), which is defined as
follows. Consider the ordered degree sequence of G, denoted by {di}1≤i≤n. If n ∈ N
is odd, then d∗(G) = d(n+1)/2. Else, if n is even, then d∗(G) =

(
1
2

)
(dn/2 + dn/2+1).

The Loebl–Komlós–Sós Conjecture is stated as follows.

Conjecture 3.45 (Loebl–Komlós–Sós). Let G be a graph on n vertices and T be a
tree on k vertices. If d∗(G) > k − 2, then T ⊆ G.

Let σ be the variance of the degree sequence of a graph G. A well known relation
between d(G) and d∗(G) is the following.

|d(G)− d∗(G)| ≤ σ.

This implies that Conjecture 3.45 is indeed closely related to Conjecture 3.16
but it is not obvious when one implies the other. It is worth mentioning that many
particular cases that are solved for Conjecture 3.45 follows the same directions of
the particular cases of Conjecture 3.16.

The case when G is a graph on n = k + c vertices, for c = 0, 1, 2, 3, was proved
by C. Bazgan, H. Li, and M. Woźniak [7] in 2000. The case for which T is a tree
of diameter 5 or a certain caterpillar, was proven by D. Piguet and M. Stein, in
2007, in [36]. Lastly, the approximated version of Conjecture 3.45 was proven by J.
Hladký, J. Komlós, D. Piguet, M. Simonovits, M. Stein, and E. Szemerédi, in 2015,
in a series of four papers [29, 30, 31, 32], in which the main result is the following.
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Theorem 3.46 (Hladký–Komlós–Piguet–Simonovits–Stein–Szemerédi, 2015). For
every α > 0 there exists k0 such that for any k > k0 we have the following. Each
graph G on n vertices with at least

(
1
2
+ α

)
n vertices of degree at least (1 + α)k

contains each tree T of order k.

We believe that the techniques and strategies used to prove certain special cases
of Conjecture 3.16 can be used to prove other cases in Conjecture 3.45 due to their
closeness and vice versa.

Another closely related problem is the problem concerning panarboreal graphs,
which are graphs that contains all possible trees on n vertices. Let s(n) denote the
minimum number of edges that a graph G on n vertices can have such that any tree
on n vertices is isomorphic to a subgraph H ⊆ G.

In 1983, F. Chung and R. Graham proved the following bounds for s(n) in [16].

Theorem 3.47 (Chung–Graham, 1983). If n ∈ N, then

1

2
n log(n) ≤ s(n) ≤ 5

log(4)
n log(n) +O(n).

It is worth mentioning that F. Chung and R. Graham point out that the constant
5

log(4)
could be improved. Unfortunately, since 1983, no improvements has been done.

3.3 Conclusion

In this chapter, we presented a collection of results in Extremal Graph Theory,
covering from Mantel’s Theorem up to the Erdős–Sós Conjecture, to introduce some
canonical results and techniques employed in this field. We also presented a plethora
of results on Conjecture 3.16, divided in four different directions, pointing the main
strategy and techniques of their proofs.

We finish this chapter by presenting a path for the proof of the case n = k + 5,
following the strategy of the similar results on Section 3.1.1. The proposed statement
is the following.

Statement 3.48. For n, k ∈ N, let G be a graph on n vertices and T be a tree on
k vertices. If d(G) > k − 2, and n = k + 5, then T ⊆ G.

Sketch of the proof: Following the idea for the proof of Theorem 3.22, the proof
follows by induction on n. Since d(G) > k − 2, we only need to consider the cases
∆(G) = k + 4, k + 3, k + 2, k + 1, k, and k − 1. Let u ∈ V (G) be the vertex such
that d(u) = ∆(G), and let z ∈ V (G) be the vertex such that d(z) = δ(G). By
Theorem 3.38, we may assume that d(z) ≤ k− 5. Let T be a tree on k vertices with
a longest path P = a0a1 . . . ar−1ar; and NT (a1) \ {a2} = {b1, . . . , bs}.
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Suppose that ∆(G) = k+ 4, which means that u is a universal vertex. Consider
the graph G′ = G− {u, z}, and T ′ = T − {a1, b1, . . . , bs}, which means that

2|E(G′)| = 2|E(G)| − 2d(u)− 2d(z) + 2 = (k − 2)(k + 5)− 2(k + 4)− d(z) + 2.

The factor +2 comes from the fact that u is a universal vertex, therefore we are
counting the edge {u, z} twice. Since d(z) ≤ k − 5, we have

2|E(G′)| ≥ (k − 2)(k + 5)− 2(k + 4)− 2(k − 5) + 2 = k2 − k − 6.

The assertion d(G′) > k − 4 implies that 2|E(G′)| > (k − 4)(k + 3), therefore

2|E(G′)| = k2 − k − 6 > (k − 4)(k + 3) = k2 − k − 12.

Which holds for all values of k. For this reason, by the induction hypothesis,
we can find an isomorphism φ′ of T ′ into G′. Then, we can extend φ′ by setting
φ(x) = φ′(x), for all x ∈ V (T ′) and letting φ(a1) = u. Because d(u) = k + 4 > s.
This implies that T ⊆ G.

The second case is if d(u) = ∆(G) = k + 3. This means that there is a vertex
x ∈ V (G) such that u and x are not adjacent. Consider G′ = G − {u, x} and
T ′ = T − {a1, b1, . . . , bs}. We have

2|E(G′)| = 2|E(G)| − 2(k + 4)− 2d(x) = (k − 2)(k + 5)− 2(k + 4)− 2d(x).

The assertion d(G′) > k − 4 requires that 2|E(G′)| > (k − 4)(k + 3), therefore

2|E(G′)| = k2 + k − 18− 2d(u) > (k − 4)(k + 3) = k2 − k − 12,

which means that 2d(u) < 2k − 6. Therefore, if d(u) ≤ k − 2, then we can use
the induction hypothesis to find an isomorphism φ′ of T ′ into G′ and then proceed
to extend it analogously to the previous case. Else, if d(u) ≥ k, we consider the
graphs G′ = G−{u, z, x} and T ′ = T −{a1, b1, bs, ar}. We can find an isomorphism
φ′ of T ′ into G′ but the extension to an isomorphism φ of T into G differs slightly
depending whether x and z are adjacent. The missing case is if d(x) = k − 1. We
first divide the case whether x is adjacent to z. If they are not adjacent, then the
case is analogous to previous case. Otherwise, we cannot proceed with our proof.

The other cases proceeds very similarly, by finding some cases that are analogous,
but ending in a subcase that requires a new strategy to find an extension of the
isomorphism found by the induction hypothesis. □□□

Observe that this proofs a partial case in the case n = k+ 5 but it requires that
the other cases hold to prove that the Erdős-Sós Conjecture holds for n = k + 5,
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namely ∆(G) = k + 3, k + 2, k + 1, k and k − 1.
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4 | Conclusion

We were able to develop an alternative and equivalent definition to the function t,
concerning the problem of Roller Coaster permutations, studied in Chapter 2, in
terms of the number of triangles in a permutation. It is worth mentioning that this
can be generalized to a sequence in any well ordered set, meaning that the numbers
doesn’t need to be integers, for example.

We presented an ILP model, in Model 2.2, and an extended ILP, in Model 2.3,
that obtained new Roller Coasters and Roller Coaster candidates, improving known
bounds for tmax(n), for n ≤ 40. We leave for future work the study of Conjecture 2.1,
and 2.4 since, if they hold, our new bounds are indeed optimal values of tmax.

Another interesting problem posed was the problem concerning the number of
triangles in a permutation, which branches to the decomposition of a permutation
in triangles and the realizable triangle sequence problem.

Finally, we present the problem in different point of views, depending on the
representation of the permutation, since the problem might be reducible to other well
studied problems in Combinatorics and Mathematics, like the Matrix Multiplication
problem.

For the Erdő-Sós Conjecture, we presented a plethora of results divided in four
different directions. Each such direction points to a different way to contribute to
the state of the art in this problem. To illustrate this idea, we presented a tentative
proof for the case n = k+5 as a natural extension of the argument for Theorem 3.17,
but it fails at some singular cases. Analogously, one could try to extend the case for
special trees for different classes of trees, or the case for special graphs, for different
properties on these graphs. Moreover, one could try to contribute to a known
result by improving the constants on the known bounds, for example, by improving
the constant of Theorem 3.23, by employing a stronger probabilistic argument, or
possibly a non-probabilistic argument.

Lastly, we presented two closely related problems that also offer similar proof
strategies on their results. Note that one could also consider a version of the conjec-
ture by including a hypothesis on the variance of the degree sequence of the graph,
which would bring even closer to Conjecture 3.45.
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